摘要
随着对地质聚合物研究的不断深入,将其作为固化剂应用于土壤固化领域的研究受到了广泛关注。地质聚合物作为一种新兴的土壤固化剂,是一种以富硅铝酸盐矿物为前驱体,在碱激发剂作用下形成的绿色无机胶凝材料,具有力学性能良好、耐久性优异以及低碳环保等优点,能够有效克服水泥/石灰等传统土壤固化剂能耗高、污染大以及耐久性差等缺点,被普遍认为是传统土壤固化剂的理想替代品。为明确地质聚合物对土壤的加固机理和增强效果,回顾近年来地质聚合物固化土的研究进展,介绍地质聚合物固化土的反应机理,详述不同因素对地质聚合物固化土无侧限抗压强度和抗剪强度等力学性能的影响,讨论地质聚合物固化土在冻融循环、干湿循环以及化学离子侵蚀等作用下的耐久性,并对地质聚合物固化土技术未来发展方向进行展望。
近年来,地基处理技术与工程应用研究在中国取得了长足发展。根据中国工程院院士龚晓南主编的《地基处理技术及发展展望
化学固化法是指将固化剂与待处理土体强制搅拌形成整体,通过物理-化学作用提高土体的微观及宏观性能。目前,在地基处理过程中普遍采用普通硅酸盐水泥(OPC)和石灰作为固化剂,但这两类固化剂均存在能耗高、污染大、碳排放高等问题。据研究报道,生产1 t OPC会向大气中排放0.8~1.0 t CO
刘汉
地质聚合物是一种以富硅铝酸盐工业固体废弃物为前驱体,在碱激发剂作用下,经过解聚、单体重建以及缩聚过程形成的三维网状无机胶凝材
“地质聚合物”这一概念最早是由法国科学家Davidovit
Lothenbach
地质聚合物对土壤的固化过程主要为富硅铝酸盐前驱体原料在碱激发剂作用下,经过地质聚合反应(以下简称“地聚反应”)形成地质聚合物凝胶材料,其中一部分地质聚合物凝胶凝结硬化构成聚合物骨架,另一部分地质聚合物凝胶包裹着土颗粒并填满土颗粒间的多余空隙形成土颗粒团聚体。聚合物骨架承托着土颗粒团聚体通过相互连接构成地质聚合物固化土空间结构体系,以此提高土体宏观力学性
Yao
(1) |
(2) |
(3) |
(4) |
为了证实上述地质聚合物固化土的反应机理,Li
目前,学者们对于地质聚合物固化土的研究主要集中在土体宏观力学性能或微观结构分析等方面,而对于地质聚合物与土壤相互作用的反应机理研究不多。主要原因是,一方面地质聚合物受前驱体、碱激发剂、水胶比等因素影响较大,土壤的存在会改变这些因素,尤其是在地质聚合物-土壤体系中地质聚合物掺量较少的情况下,然而地质聚合物掺量过多则会大幅提高造价,是不经济的。因此,相较于纯地质聚合物体系,在地质聚合物-土壤体系中控制地质聚合物性能困难得多。另一方面,地质聚合物的高碱性环境也会改变土壤的性质。例如,土壤中硅铝组分也会溶解在碱性溶液中,从而造成土壤性质发生改变。不仅如此,不同土壤的物理性质、结构组分也会有所差别,采用相同的地质聚合物固化不同的土壤时也可能表现出完全不同的性质。针对以上问题,未来应综合考虑土壤类别以及地质聚合物各方面影响因素,对地质聚合物固化土反应机理做进一步的研究,建立更为精确的地质聚合物-土壤体系反应机理模型。
无侧限抗压强度(UCS)是最能直观反映地质聚合物固化土宏观性能的力学性能参数。试验研究表明,影响地质聚合物固化土UCS的因素主要包括前驱体种类、前驱体掺量、碱激发剂以及矿物添加剂等。
前驱体的种类对地质聚合物固化土UCS有显著的影响。其中,最为常用的前驱体为矿渣、粉煤灰以及偏高岭土等。研究表明,在碱激发剂的激发活化作用下,12.5%掺量的矿渣基地质聚合物固化土28 d UCS为4.5 MP
根据氧化钙的含量,粉煤灰可分为高钙粉煤灰和低钙粉煤
综上所述,地质聚合物可显著提高土壤UCS,其中高钙系地质聚合物适用于提高固化土早期强度,而低钙系地质聚合物提高固化土后期强度更为出色。为了保证地质聚合物固化土全生命周期UCS,通过协同使用高钙系地质聚合物和低钙系地质聚合物固化土是一种有效的解决手段。另外,高钙系地质聚合物固化土普遍存在脆性破坏的问题。研究证明,通过掺加纤维可有效提高地质聚合物固化土的延性。然而,对于不同类型纤维增强地质聚合物固化土的耐久性问题研究较少。
地质聚合物固化土UCS随前驱体掺量的变化而呈现出不同的发展规律。周恒宇

图1 无侧限抗压强度与前驱体掺量之间的关
Fig. 1 Relationship between UCS and precursor dosag
总之,针对地质聚合物固化土UCS随着前驱体掺量的变化规律,学者们未达成统一认识。主要原因是,一方面土壤力学性质、内部结构以及矿物成分等差异较大,另一方面地质聚合物原料种类繁多以及成分复杂,造成地质聚合物性质不一。因此,今后应根据不同地区的土壤类别,研发与之对应固化效果最好的地质聚合物,研究地质聚合物固化土UCS与前驱体掺量之间的变化规律,探究地质聚合物前驱体的最优掺量。
1) 碱激发剂浓度、类型、模数
常用的碱激发剂分为苛性碱、碱式硅酸盐、碱式碳酸盐以及碱式硫酸盐4
Phummiphan
王东星
上述研究表明,相较于弱碱激发剂,强碱激发剂对地质聚合物激发效果更显著。然而,采用强碱作为碱激发剂会大幅提高造价成本。因此,在今后的工程实践中应根据具体需求而选用适当的碱激发剂。
2) 碱激发剂掺量
陈锐
Cristelo

图2 电石渣含量对抗压强度的影
Fig. 2 Effect of CCR content on compressive strengt
然而,Phummiphan
综上所述,前驱体种类、前驱体掺量、碱激发剂以及矿物添加剂等对地质聚合物固化土UCS的影响规律各不相同。
土壤种类 | 前驱体原料 | 碱激发剂 | 前驱体掺量/% | UCS | 参考文献 |
---|---|---|---|---|---|
软黏土 | 矿渣 | Na2SiO3+NaOH | 12.5 | 4.37 MPa(28 d) |
[ |
软黏土 | 矿渣 | Na2SiO3 | 12.5 | 4.5 MPa(28 d) |
[ |
黑棉土 | 粉煤灰(F) | NaOH | 20 | 2.706 MPa(28 d) |
[ |
淤泥质土 | 矿渣+粉煤灰(C) | NaOH | 20 | 1.5 MPa(14 d) |
[ |
软土 | 粉煤灰(C)/粉煤灰(F) | Na2SiO3+NaOH | 20 | C:0.6 MPa(7 d)、2.6 MPa(84 d) |
[ |
F:0.1 MPa(7 d)、8.5 MPa(84 d) | |||||
黏土 | 粉煤灰(C) | Na2SiO3+NaOH | 10、15、20 | 1~8 MPa(28 d) |
[ |
软黏土 | 矿渣+聚丙烯纤维 | Na2SiO3+NaOH | 10、20、30 | 400~2 500 kPa(7 d) |
[ |
800~4 000 kPa(28 d) | |||||
淤泥 | 偏高岭土 | Na2SiO3+NaOH | 25、30 | 0.447 MPa、0.759 MPa(28 d) |
[ |
软土 | 偏高岭土+水泥 | NaOH | 10、20、30 | 160 kPa、230KP、180 kPa(28 d) |
[ |
淤泥质土 | 矿渣+粉煤灰 | NaOH、KOH | 20 | 100~3 700 kPa(7 d) |
[ |
1 600~5 800 kPa(28 d) | |||||
红黏土 | 粉煤灰(C) | Na2SiO3+NaOH | 30 | 5~7.5 MPa(7 d) |
[ |
8.5~10.5 MPa(28 d) | |||||
淤泥 | 粉煤灰(F) | NaOH、Na2CO3 | 15 | 1 934.3 kPa(90 d)、110.5 kPa(28 d)、 |
[ |
Na2SiO3·9H2O | 395.7 kPa(90 d) | ||||
盐渍土 | 粉煤灰(C) | Na2SiO3+石灰 | 18 | 6 MPa(30 d) |
[ |
疏浚淤泥 | 矿渣+粉煤灰(C) | Na2SiO3 | 40 | 9 806.64 kPa(28 d) |
[ |
淤泥质土 | 钢渣粉 | NaOH | 10 | 0.969 MPa(7 d) |
[ |
1.937 MPa(28 d) | |||||
海相软土 | 粉煤灰(C) | Na2SiO3+NaOH | 25、35、45 | 100~1 200 kPa(28 d) |
[ |
砂土 | 铜尾矿+硅灰 | KOH | 10、15、20 | 6~10 MPa(28 d) |
[ |
注: C为高钙类粉煤灰;F为低钙类粉煤灰。
抗剪强度是土体主要力学性能之一。在评论地质聚合物固化土力学性能时,抗剪强度是一个主要的考虑因素。Ghadir
有学者研究发现,相较于水泥固化土在抗剪破坏时的脆性破坏,地质聚合物固化土在脆性破坏时还伴随着应变软化现象发生。Rios

图3 应力-应变关系曲
Fig. 3 Stress-strain relationship curve

图4 抗剪强度包络
Fig. 4 Shear strength envelope diagra
耐久性指的是地质聚合物固化土抵抗物理作用或化学作用等对其产生显著劣化的性能,对结构长期使用寿命起着决定性的作用。
地质聚合物固化土的抗冻融性主要取决于固化土的孔隙结构和空气含量。吴燕开
Sahoo
有研究表明,矿物添加剂可有效提高地质聚合物固化土的抗冻融性。邵俐
综上可知,水泥固化土的抗冻融性较差,而地质聚合物固化土的抗冻融性更为优异。此外,掺入矿物添加剂有助于提高地质聚合物固化土的抗冻融性,但是针对不同矿物添加剂对地质聚合物固化土抗冻融性增强机理研究较少。
吴燕开
有学者研究发现,用于干湿循环试验中液体介质的种类对地质聚合物固化土性能具有较大影响。Ngo
目前,学者们针对地质聚合物抗化学离子侵蚀性能的研究主要集中于抗盐类溶液、酸性溶液以及碱性溶液侵蚀试验。Jiang
有学者通过研究粉煤灰基地质聚合物固化土的抗硫酸(H2SO4)和抗氯化钠(NaCl)溶液侵蚀性能发现,粉煤灰基地质聚合物固化土表现出较好的抗H2SO4和NaCl侵蚀性,在28 d侵蚀作用下,NaCl和H2SO4对地质聚合物固化土UCS的降低率分别不超过10%和38
此外,相较于单元地质聚合物,二元地质聚合物固化土具有更为优异的抗化学离子侵蚀性。Samantasinghar
与普通硅酸盐水泥(OPC)/石灰等传统固化剂相比,地质聚合物的广泛使用可以有效提高大宗工业固体废弃物的资源利用率,显著降低二氧化碳等温室气体的排放以及减少煤炭等不可再生能源的消耗,有助于实现“碳达峰、碳中和”战略目标。目前,地质聚合物固化土已取得了较大的研究进展,但还存在以下问题尚待进一步研究探讨:
1)由于地质聚合物原材料、碱激发剂种类繁多以及不同区域土壤性质差异较大,近年来试验研究主要集中在地质聚合物固化土宏观力学性能、微观结构特征和耐久性方面,但对地质聚合物-土壤体系的反应机理模型研究报道不多。此外,今后应针对不同土壤性质的独特性,研发与之对应固化效果最为理想的地质聚合物。
2)学者们针对地质聚合物固化土开展的力学性能试验较为单一,主要以无侧限压缩试验、三轴压缩试验为主,而其他如三轴剪切试验、无荷载膨胀试验、自由膨胀试验、间接剪切试验以及冲蚀试验等具有代表性的岩土试验研究较少。
3)近年来,针对地质聚合物固化土的耐久性研究主要是在冻融循环、干湿循环以及化学离子侵蚀等单因素下开展的,然而,实际情况下固化土往往是在多因素耦合下服役的。因此,今后应根据当地自然环境条件,开展多因素耦合情况下地质聚合物固化土的耐久性研究。
4)地质聚合物固化土纤维加筋材料主要为聚丙烯纤维、玄武岩纤维以及玻璃纤维等传统纤维,对中国储量丰富、生态环保的天然纤维(竹纤维、秸秆纤维、动物纤维等)对地质聚合物固化土的力学性能、耐久性影响以及增强机理研究较少。
参考文献
龚晓南. 地基处理技术及发展展望 [M]. 北京: 中国建筑工业出版社, 2014. [百度学术]
GONG X N. Advances of ground improvement technologies [M]. Beijing: China Architecture & Building Press, 2014. (in Chinese) [百度学术]
刘汉龙, 赵明华. 地基处理研究进展[J]. 土木工程学报, 2016, 49(1): 96-115. [百度学术]
LIU H L, ZHAO M H. Review of ground improvement technical and its application in China [J]. China Civil Engineering Journal, 2016, 49(1): 96-115. (in Chinese) [百度学术]
《中国公路学报》编辑部. 中国路基工程学术研究综述·2021[J]. 中国公路学报, 2021, 34(3): 1-49. [百度学术]
Editorial Department of China Journal of Highway and Transport. Review on China, s subgrade engineering Research·2021 [J]. China Journal of Highway and Transport, 2021, 34(3): 1-49. (in Chinese) [百度学术]
师旭超, 孙运德, 士贺飞. 长期反复荷载作用下软黏土地基的变形特性[J]. 土木与环境工程学报(中英文), 2020, 42(2): 23-29. [百度学术]
SHI X C, SUN Y D, SHI H F. Deformation characteristics of soft soil foundation under long-term repeated loading [J]. Journal of Civil and Environmental Engineering, 2020, 42(2): 23-29. (in Chinese) [百度学术]
SIDDIQUE R, KHAN M I. Supplementary cementing materials [M]. Berlin: Springer Science & Business Media, 2011. [百度学术]
SAINI G, VATTIPALLI U. Assessing properties of alkali activated GGBS based self-compacting geopolymer concrete using nano-silica [J]. Case Studies in Construction Materials, 2020, 12: e00352. [百度学术]
TANER T. A lime production of the fluidized bed boiler’s energy and exergy analyse [J]. Journal of Thermal Engineering, 2017, 3(3): 1271-1274. [百度学术]
俞家人, 陈永辉, 陈庚, 等. 地聚物固化软黏土的力学特征及机理分析[J]. 建筑材料学报, 2020, 23(2): 364-371. [百度学术]
YU J R, CHEN Y H, CHEN G, et al. Mechanical behaviour of geopolymer stabilized clay and its mechanism [J]. Journal of Building Materials, 2020, 23(2): 364-371. (in Chinese) [百度学术]
刘汉龙. 绿色地基处理技术探讨[J]. 土木工程学报, 2018, 51(7): 121-128. [百度学术]
LIU H L. Study on green ground improvement technique [J]. China Civil Engineering Journal, 2018, 51(7): 121-128. (in Chinese) [百度学术]
赵人达, 成正清, 文甜, 等. 早龄期低钙粉煤灰基地聚物混凝土拉伸徐变特性[J]. 土木与环境工程学报(中英文), 2019, 41(6): 111-117. [百度学术]
ZHAO R D, CHENG Z Q, WEN T, et al. Tensile creep characteristics of early-age low-calcium fly ash-based geopolymer concrete [J]. Journal of Civil and Environmental Engineering, 2019, 41(6): 111-117. (in Chinese) [百度学术]
BAI T, SONG Z G, WANG H, et al. Performance evaluation of metakaolin geopolymer modified by different solid wastes [J]. Journal of Cleaner Production, 2019, 226: 114-121. [百度学术]
LEE W K W, VAN DEVENTER J S J. The effect of ionic contaminants on the early-age properties of alkali-activated fly ash-based cements [J]. Cement and Concrete Research, 2002, 32(4): 577-584. [百度学术]
ZHANG M, GUO H, EL-KORCHI T, et al. Experimental feasibility study of geopolymer as the next-generation soil stabilizer [J]. Construction and Building Materials, 2013, 47: 1468-1478. [百度学术]
YAGHOUBI M, ARULRAJAH A, MIRI DISFANI M, et al. Compressibility and strength development of geopolymer stabilized columns cured under stress [J]. Soils and Foundations, 2020, 60(5): 1241-1250. [百度学术]
PALOMO A, BLANCO-VARELA M T, GRANIZO M L, et al. Chemical stability of cementitious materials based on metakaolin [J]. Cement and Concrete Research, 1999, 29(7): 997-1004. [百度学术]
CHENG T W, CHIU J P. Fire-resistant geopolymer produced by granulated blast furnace slag [J]. Minerals Engineering, 2003, 16(3): 205-210. [百度学术]
WEN N N, ZHAO Y D, YU Z Y, et al. A sludge and modified rice husk ash-based geopolymer: synthesis and characterization analysis [J]. Journal of Cleaner Production, 2019, 226: 805-814. [百度学术]
AMER A A, EL-HOSENY S. Properties and performance of metakaolin pozzolanic cement pastes [J]. Journal of Thermal Analysis and Calorimetry, 2017, 129(1): 33-44. [百度学术]
DAVIDOVITS J. Geopolymers and geopolymeric materials [J]. Journal of Thermal Analysis, 1989, 35(2): 429-441. [百度学术]
余春松, 张玲玲, 郑大伟, 等. 固废基地质聚合物的研究及其应用进展[J]. 中国科学: 技术科学, 2022, 52(4): 529-546. [百度学术]
YU C S, ZHANG L L, ZHENG D W, et al. Research progress of geopolymer materials prepared from solid waste and their applications [J]. Scientia Sinica: Technologica, 2022, 52(4): 529-546. (in Chinese) [百度学术]
LOTHENBACH B, SCRIVENER K, HOOTON R D. Supplementary cementitious materials [J]. Cement and Concrete Research, 2011, 41(12): 1244-1256. [百度学术]
王爱国, 王星尧, 孙道胜, 等. 地质聚合物凝结硬化及其调节技术的研究进展[J]. 材料导报, 2021, 35(13): 5-14. [百度学术]
WANG A G, WANG X Y, SUN D S, et al. Research progress on setting and hardening of geopolymers and their control [J]. Materials Reports, 2021, 35(13): 5-14. (in Chinese) [百度学术]
KAJA A M, LAZARO A, YU Q L. Effects of Portland cement on activation mechanism of class F fly ash geopolymer cured under ambient conditions [J]. Construction and Building Materials, 2018, 189: 1113-1123. [百度学术]
YAO J L, QIU H J, HE H, et al. Application of a soft soil stabilized by composite geopolymer [J]. Journal of Performance of Constructed Facilities, 2021, 35(4): 04021018. [百度学术]
XIANG J C, LIU L P, HE Y, et al. Early mechanical properties and microstructural evolution of slag/metakaolin-based geopolymers exposed to Karst water [J]. Cement and Concrete Composites, 2019, 99: 140-150. [百度学术]
LI N, FARZADNIA N, SHI C J. Microstructural changes in alkali-activated slag mortars induced by accelerated carbonation [J]. Cement and Concrete Research, 2017, 100: 214-226. [百度学术]
WANG Y S, ALREFAEI Y, DAI J G. Influence of coal fly ash on the early performance enhancement and formation mechanisms of silico-aluminophosphate geopolymer [J]. Cement and Concrete Research, 2020, 127: 105932. [百度学术]
YU J R, CHEN Y H, CHEN G, et al. Experimental study of the feasibility of using anhydrous sodium metasilicate as a geopolymer activator for soil stabilization [J]. Engineering Geology, 2020, 264: 105316. [百度学术]
MURMU A L, DHOLE N, PATEL A. Stabilisation of black cotton soil for subgrade application using fly ash geopolymer [J]. Road Materials and Pavement Design, 2020, 21(3): 867-885. [百度学术]
WANG S D, SCRIVENER K L. Hydration products of alkali activated slag cement [J]. Cement and Concrete Research, 1995, 25(3): 561-571. [百度学术]
PROVIS J L, YONG C Z, DUXSON P, et al. Correlating mechanical and thermal properties of sodium silicate-fly ash geopolymers [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 336(1/2/3): 57-63. [百度学术]
MOZUMDER R A, LASKAR A I. Prediction of unconfined compressive strength of geopolymer stabilized clayey soil using artificial neural network [J]. Computers and Geotechnics, 2015, 69: 291-300. [百度学术]
CRISTELO N, GLENDINNING S, FERNANDES L, et al. Effects of alkaline-activated fly ash and Portland cement on soft soil stabilisation [J]. Acta Geotechnica, 2013, 8(4): 395-405. [百度学术]
吴俊, 征西遥, 杨爱武, 等. 矿渣-粉煤灰基地质聚合物固化淤泥质黏土的抗压强度试验研究[J]. 岩土力学, 2021, 42(3): 647-655. [百度学术]
WU J, ZHENG X Y, YANG A W, et al. Experimental study on the compressive strength of muddy clay solidified by the one-part slag-fly ash based geopolymer [J]. Rock and Soil Mechanics, 2021, 42(3): 647-655. (in Chinese) [百度学术]
PALOMO A, GRUTZECK M W, BLANCO M T. Alkali-activated fly ashes: A cement for the future [J]. Cement and Concrete Research, 1999, 29(8): 1323-1329. [百度学术]
王璐瑶, 谢潇. 浅谈粉煤灰基地质聚合物的发展进程及应用[J]. 科技与创新, 2019(9): 154-155. [百度学术]
WANG L Y, XIE X. Discussion on development process and application of fly ash base gopolymer [J]. Science and Technology & Innovation, 2019(9): 154-155. (in Chinese) [百度学术]
CRISTELO N, GLENDINNING S, FERNANDES L, et al. Effect of calcium content on soil stabilisation with alkaline activation [J]. Construction and Building Materials, 2012, 29: 167-174. [百度学术]
KHADKA S D, JAYAWICKRAMA P W, SENADHEERA S. Strength and shrink/swell behavior of highly plastic clay treated with geopolymer [J]. Transportation Research Record, 2018, 2672(52): 174-184. [百度学术]
ODEH N A, AL-RKABY A H J. Strength, durability, and microstructures characterization of sustainable geopolymer improved clayey soil [J]. Case Studies in Construction Materials, 2022, 16: e00988. [百度学术]
SARGENT P, HUGHES P N, ROUAINIA M. A new low carbon cementitious binder for stabilising weak ground conditions through deep soil mixing [J]. Soils and Foundations, 2016, 56(6): 1021-1034. [百度学术]
COLLINS F, SANJAYAN J G. Microcracking and strength development of alkali activated slag concrete [J]. Cement and Concrete Composites, 2001, 23(4/5): 345-352. [百度学术]
CHOWDARY B, RAMANAMURTY V, PILLAI R J. Fiber reinforced geopolymer treated soft clay: An innovative and sustainable alternative for soil stabilization [J]. Materials Today: Proceedings, 2020, 32: 777-781. [百度学术]
WANG S N, XUE Q P, MA W, et al. Experimental study on mechanical properties of fiber-reinforced and geopolymer-stabilized clay soil [J]. Construction and Building Materials, 2021, 272: 121914. [百度学术]
POURABBAS BILONDI M, TOUFIGH M M, TOUFIGH V. Experimental investigation of using a recycled glass powder-based geopolymer to improve the mechanical behavior of clay soils [J]. Construction and Building Materials, 2018, 170: 302-313. [百度学术]
周恒宇, 王修山, 胡星星, 等. 地聚合物固化淤泥强度增长影响因素及机制分析[J]. 岩土力学, 2021, 42(8): 2089-2098. [百度学术]
ZHOU H Y, WANG X S, HU X X, et al. Influencing factors and mechanism analysis of strength development of geopolymer stabilized sludge [J]. Rock and Soil Mechanics, 2021, 42(8): 2089-2098. (in Chinese) [百度学术]
ARULRAJAH A, YAGHOUBI M, DISFANI M M, et al. Evaluation of fly ash- and slag-based geopolymers for the improvement of a soft marine clay by deep soil mixing [J]. Soils and Foundations, 2018, 58(6): 1358-1370. [百度学术]
朱月, 陈锐. 碱激发材料加固软土强度的影响因素试验研究[J]. 公路, 2020, 65(3): 23-28. [百度学术]
ZHU Y, CHEN R. Experimental study on factors affecting strength of soft soil stabilized with alkali-activated material [J]. Highway, 2020, 65(3): 23-28. (in Chinese) [百度学术]
PROVIS J L, PALOMO A, SHI C J. Advances in understanding alkali-activated materials [J]. Cement and Concrete Research, 2015, 78: 110-125. [百度学术]
LE V Q, DO M Q, HOANG M D, et al. Effect of alkaline activators to engineering properties of geopolymer-based materials synthesized from red mud [J]. Key Engineering Materials, 2018, 777: 508-512. [百度学术]
POURAKBAR S, HUAT B B K, ASADI A, et al. Model study of alkali-activated waste binder for soil stabilization [J]. International Journal of Geosynthetics and Ground Engineering, 2016, 2(4): 1-12. [百度学术]
YAGHOUBI M, ARULRAJAH A, DISFANI M M, et al. Effects of industrial by-product based geopolymers on the strength development of a soft soil [J]. Soils and Foundations, 2018, 58(3): 716-728. [百度学术]
PHUMMIPHAN I, HORPIBULSUK S, SUKMAK P, et al. Stabilisation of marginal lateritic soil using high calcium fly ash-based geopolymer [J]. Road Materials and Pavement Design, 2016, 17(4): 877-891. [百度学术]
PHUMMIPHAN I, HORPIBULSUK S, RACHAN R, et al. High calcium fly ash geopolymer stabilized lateritic soil and granulated blast furnace slag blends as a pavement base material [J]. Journal of Hazardous Materials, 2018, 341: 257-267. [百度学术]
王东星, 王宏伟, 邹维列, 等. 碱激发粉煤灰固化淤泥微观机制研究[J]. 岩石力学与工程学报, 2019, 38(Sup 1): 3197-3205. [百度学术]
WANG D X, WANG H W, ZOU W L, et al. Research on micro-mechanisms of dredged sludge solidified with alkali-activated fly ash [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(Sup 1): 3197-3205. (in Chinese) [百度学术]
LV Q F, JIANG L S, MA B, et al. A study on the effect of the salt content on the solidification of sulfate saline soil solidified with an alkali-activated geopolymer [J]. Construction and Building Materials, 2018, 176: 68-74. [百度学术]
孙秀丽, 童琦, 刘文化, 等. 碱激发粉煤灰和矿粉改性疏浚淤泥力学特性及显微结构研究[J]. 大连理工大学学报, 2017, 57(6): 622-628. [百度学术]
SUN X L, TONG Q, LIU W H, et al. Study of microstructure and mechanical properties of dredged silt solidified using fly ash and slag stimulated by alkali [J]. Journal of Dalian University of Technology, 2017, 57(6): 622-628. (in Chinese) [百度学术]
陈锐, 郝若愚, 李笛, 等. 碱激发材料固化低液限粉黏土路用性能及抗冻融特性研究[J]. 工程地质学报, 2022, 30(2): 327-337. [百度学术]
CHEN R, HAO R Y, LI D, et al. Study on road performance and freeze-thaw resistance of alkali activated material stabilized low-liquid-limit silty clay [J]. Journal of Engineering Geology, 2022, 30(2): 327-337. (in Chinese) [百度学术]
CHIMOYE W. Strength of soft bangkok clay improved by geopolymer from palm fuel ash [J]. International Journal of Engineering and Technology Research, 2014, 2(5): 1-10. [百度学术]
吴燕开, 胡晓士, 胡锐, 等. 烧碱激发钢渣粉在淤泥质土中的试验研究[J]. 岩土工程学报, 2017, 39(12): 2187-2194. [百度学术]
WU Y K, HU X S, HU R, et al. Experimental study on caustic soda-activated steel slag powder in muddy soil [J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2187-2194. (in Chinese) [百度学术]
CRISTELO N, GLENDINNING S, MIRANDA T, et al. Soil stabilisation using alkaline activation of fly ash for self compacting rammed earth construction [J]. Construction and Building Materials, 2012, 36: 727-735. [百度学术]
PHETCHUAY C, HORPIBULSUK S, ARULRAJAH A, et al. Strength development in soft marine clay stabilized by fly ash and calcium carbide residue based geopolymer [J]. Applied Clay Science, 2016, 127/128: 134-142. [百度学术]
YIP C K, LUKEY G C, PROVIS J L, et al. Effect of calcium silicate sources on geopolymerisation [J]. Cement and Concrete Research, 2008, 38(4): 554-564. [百度学术]
LI C, SUN H H, LI L T. A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements [J]. Cement and Concrete Research, 2010, 40(9): 1341-1349. [百度学术]
VAN DEVENTER J S J, PROVIS J L, DUXSON P, et al. Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products [J]. Journal of Hazardous Materials, 2007, 139(3): 506-513. [百度学术]
PHUMMIPHAN I, HORPIBULSUK S, PHOO-NGERNKHAM T, et al. Marginal lateritic soil stabilized with calcium carbide residue and fly ash geopolymers as a sustainable pavement base material [J]. Journal of Materials in Civil Engineering, 2017, 29(2): 04016195. [百度学术]
SHEIKHHOSSEINI LORI I, TOUFIGH M M, TOUFIGH V. Improvement of poorly graded sandy soil by using copper mine tailing dam sediments-based geopolymer and silica fume [J]. Construction and Building Materials, 2021, 281: 122591. [百度学术]
GHADIR P, ZAMANIAN M, MAHBUBI-MOTLAGH N, et al. Shear strength and life cycle assessment of volcanic ash-based geopolymer and cement stabilized soil: A comparative study [J]. Transportation Geotechnics, 2021, 31: 100639. [百度学术]
KHASIB I A, NORSYAHARIATI N, DAUD N, et al. Strength development and microstructural behavior of soils [J]. Applied Sciences, 2021, 11(8): 3572. [百度学术]
AL-RKABY A H J. Evaluating shear strength of sand- GGBFS based geopolymer composite material [J]. Acta Polytechnica, 2019, 59(4): 305-311. [百度学术]
RIOS S, RAMOS C, VIANA DA FONSECA A, et al. Mechanical and durability properties of a soil stabilised with an alkali-activated cement [J]. European Journal of Environmental and Civil Engineering, 2019, 23(2): 245-267. [百度学术]
RIOS S, CRISTELO N, VIANA DA FONSECA A, et al. Structural performance of alkali-activated soil ash versus soil cement [J]. Journal of Materials in Civil Engineering, 2016, 28(2): 04015125. [百度学术]
ABDULLAH H H, SHAHIN M A, WALSKE M L. Geo-mechanical behavior of clay soils stabilized at ambient temperature with fly-ash geopolymer-incorporated granulated slag [J]. Soils and Foundations, 2019, 59(6): 1906-1920. [百度学术]
COOP M R, ATKINSON J H. The mechanics of cemented carbonate sands [J]. Géotechnique, 1993, 43(1): 53-67. [百度学术]
WANG H C, YAO J L, LIN Y, et al. Research of geopolymer deal with the strength of soft soil and microstructure test [M]// SHU S Z, HE L K, KAI Y. New developments in materials for infrastructure sustainability and the contemporary issues in geo-environmental engineering. Cham: Springer, 2019: 204-214. [百度学术]
吴燕开, 苗盛瑶, 李鑫, 等. 冻融循环下钢渣粉水泥改良膨胀土室内试验研究[J]. 工程地质学报, 2021, 29(3): 851-861. [百度学术]
WU Y K, MIAO S Y, LI X, et al. Experimental study on physical and mechanical properties of expansive soil improved by steel slag powder cement under freeze-thaw cycle [J]. Journal of Engineering Geology, 2021, 29(3): 851-861. (in Chinese) [百度学术]
柯睿, 汪洪星, 谈云志, 等. 冻融循环对固化淤泥土力学性质的影响[J]. 长江科学院院报, 2019, 36(8): 136-139, 145. [百度学术]
KE R, WANG H X, TAN Y Z, et al. Effect of freeze-thaw cycle on mechanical properties of solidified silt [J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(8): 136-139, 145. (in Chinese) [百度学术]
郑郧, 马巍, 邴慧. 冻融循环对土结构性影响的试验研究及影响机制分析[J]. 岩土力学, 2015, 36(5): 1282-1287, 1294. [百度学术]
ZHENG Y, MA W, BING H. Impact of freezing and thawing cycles on structure of soils and its mechanism analysis by laboratory testing [J]. Rock and Soil Mechanics, 2015, 36(5): 1282-1287, 1294. (in Chinese) [百度学术]
SAHOO S, PRASAD SINGH S. Strength and durability properties of expansive soil treated with geopolymer and conventional stabilizers [J]. Construction and Building Materials, 2022, 328: 127078. [百度学术]
SAMANTASINGHAR S, SINGH S P. Strength and durability of granular soil stabilized with FA-GGBS geopolymer [J]. Journal of Materials in Civil Engineering, 2021, 33(6): 06021003. [百度学术]
ALLAHVERDI A, ABADI M M B R, ANWAR HOSSAIN K M, et al. Resistance of chemically-activated high phosphorous slag content cement against freeze-thaw cycles [J]. Cold Regions Science and Technology, 2014, 103: 107-114. [百度学术]
邵俐, 李佩青, 王彬杰. 冻融循环对碱激发高炉矿渣微粉加固软土强度的影响[J]. 公路交通科技, 2022, 39(1): 40-47. [百度学术]
SHAO L, LI P Q, WANG B J. Influence of freeze-thaw cycle on strength of soft soil solidified by alkali-activated ground granulated blast furnace slag [J]. Journal of Highway and Transportation Research and Development, 2022, 39(1): 40-47. (in Chinese) [百度学术]
吴燕开, 乔晓龙, 李丹丹, 等. 干湿循环下钢渣粉水泥改良膨胀土室内试验研究[J]. 西安建筑科技大学学报(自然科学版), 2021, 53(3): 319-329. [百度学术]
WU Y K, QIAO X L, LI D D, et al. Experimental study on expansive soil improved by steel slag powder-cement under dry-wet cycles [J]. Journal of Xi, an University of Architecture & Technology (Natural Science Edition), 2021, 53(3): 319-329. (in Chinese) [百度学术]
ZHANG R, LONG M X, LAN T, et al. Stability analysis method of geogrid reinforced expansive soil slopes and its engineering application [J]. Journal of Central South University, 2020, 27(7): 1965-1980. [百度学术]
NGO T P, BUI Q B, PHAN V T A, et al. Durability of geopolymer stabilised compacted earth exposed to wetting-drying cycles at different conditions of pH and salt [J]. Construction and Building Materials, 2022, 329: 127168. [百度学术]
HOY M, RACHAN R, HORPIBULSUK S, et al. Effect of wetting-drying cycles on compressive strength and microstructure of recycled asphalt pavement - Fly ash geopolymer [J]. Construction and Building Materials, 2017, 144: 624-634. [百度学术]
LE H B, BUI Q B, TANG L. Geopolymer recycled aggregate concrete: from experiments to empirical models [J]. Materials, 2021, 14(5): 1180. [百度学术]
RIVERA J F, OROBIO A, CRISTELO N, et al. Fly ash-based geopolymer as A4 type soil stabiliser [J]. Transportation Geotechnics, 2020, 25: 100409. [百度学术]
NOOLU V, RAO G M, REDDY B S K, et al. Strength and durability characteristics of GGBS geopolymer stabilized black cotton soil [J]. Materials Today: Proceedings, 2021, 43: 2373-2376. [百度学术]
JIANG N J, DU Y J, LIU K. Durability of lightweight alkali-activated ground granulated blast furnace slag (GGBS) stabilized clayey soils subjected to sulfate attack [J]. Applied Clay Science, 2018, 161: 70-75. [百度学术]
ROLLINGS R S, BURKES J P, ROLLINGS M P. Sulfate attack on cement-stabilized sand [J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(5): 364-372. [百度学术]
DŽUNUZOVIĆ N, KOMLJENOVIĆ M, NIKOLIĆ V, et al. External sulfate attack on alkali-activated fly ash-blast furnace slag composite [J]. Construction and Building Materials, 2017, 157: 737-747. [百度学术]
QIAO C Y, SURANENI P, WEISS J. Damage in cement pastes exposed to NaCl solutions [J]. Construction and Building Materials, 2018, 171: 120-127. [百度学术]
LI X, RAO F, SONG S X, et al. Deterioration in the microstructure of metakaolin-based geopolymers in marine environment [J]. Journal of Materials Research and Technology, 2019, 8(3): 2747-2752. [百度学术]
TEMUUJIN J, MINJIGMAA A, LEE M, et al. Characterisation of class F fly ash geopolymer pastes immersed in acid and alkaline solutions [J]. Cement and Concrete Composites, 2011, 33(10): 1086-1091. [百度学术]