摘要
当前的氮循环模式存在人工固氮/脱氮过程重复耗能、可持续性不佳的问题。针对氨氮的污染-资源双重属性特征,污水中氨氮的资源化处理技术亟须研发。在各种氨氮回收技术中,电化学技术具有反应快速、装备简单、操作便捷等优势,已经成为热门研究方向。综述电化学介导氨氮回收技术的研究与发展现状:围绕电化学系统中不同形态氨氮的迁移转化机制,主要介绍3种回收技术的主要原理,包括电驱迁移与界面吸附、阴极还原促进汽化和阳极氧化促进沉淀;进一步聚焦电极与膜材料对氨氮回收性能的强化作用,分析电容去离子与膜技术(基于阳离子交换膜、疏水透气膜、双级膜的工艺)的能效水平,指出多过程耦合的氨氮汽提技术在降低能耗与提升效率方面的良好前景;展望双碳背景下技术革新的内在需求,建议未来从系统高性能元件开发、能量削减与功能拓展/智慧化运行等方向推进电化学介导氨氮回收技术的高质量可持续发展。
为满足粮食生产需求,中国每年经人工固氮生产的氨态氮高达6 000万
污水中的氨氮主要包括离子铵(NH)和游离氨(NH3)两种形态,在pH值为9.24(温度25 ℃)时,二者各占50%(

图1 针对废水中不同氨氮存在形态的常见回收技术
Fig. 1 Common recovery technologies for different forms of ammonium-nitrogen in wastewater
电化学介导的氨氮回收主要包括3方面的技术思路:电场强化NH
电极是电化学系统中的关键要素,其材料种类、理化性质、物相结构决定了工艺过程的效率、能耗、成本及稳定
除了作为电吸附/电容介质外,电化学沉淀技术中的镁电极不仅充当导电材料,还(基于氧化反应)向溶液释放镁离子(

图2 电化学介导下的氨氮回收基本原理及其强化工艺构型示意图
Fig. 2 Schematic drawing of principles for ammonium-nitrogen recovery mediated by electrochemical approaches and its enhancing methodologies
除电极材料外,膜工艺凭借其高效的分离特性及复合功能(可针对不同氨氮形态(NH与NH3)选择性地截留、透过或提供其形态转化的酸碱条件),近几年与电化学技术的耦合与集成被越来越多地提出和关注。现有研究已逐步形成围绕阳离子交换膜、疏水透气膜、双极膜3类膜材料的膜强化电介导技术体系。作为高效功能界面,膜材料的有效结合可使电化学技术更具氨氮选择性、稳定性与效能优势。
理想情况下,两电极构成的电化学系统中的阳离子传输应主要为NH向阴极的定向迁移(如
CEM是一种致密的聚合物材料,主要由带负电基团(例如磺酸基团)的交联聚合物链组成,其固定基团能使大部分阴离子和溶解性有机物在静电排斥与空间位阻作用下被截留,而允许阳离子通
由于NH的迁移富集与O
常见的GPM为基于有机高分子聚合物、界面接触角高于90°的微孔透气材料,正常条件下GPM孔被气体充填,废水中NH3等挥发性物质可以在跨膜分压差驱动下穿过GP
在使用常规惰性电极(如碳电极)的电化学系统中,面向氨气与磷酸铵镁回收所需的水电解过程一般需要在电极间电压大于2.057 V(水电解总电位)的条件下才能发生,这意味着电极产
BPM是一类特殊的离子交换膜,通常由阳、阴离子交换层结合构
针对现有的电介导氨氮回收技术,氨氮回收/去除率及单位能耗是评价其系统性能的关键指标。
回收策略 | 电极/膜材料 | 工艺类型 | 目标废水 | 氨氮浓度/(mg/L) | 处理 规模 | (氨氮去除/回收率)/% | 能量消耗/ (kW·h/kg) (以N计) | 参考文献 |
---|---|---|---|---|---|---|---|---|
NH沉淀 | 镁合金阳极 | 鸟粪石电化学沉淀法 | 合成废水 | 40 | 小试 | 42 | 20.2 |
[ |
纯镁阳极 | 鸟粪石电化学沉淀法 | 畜禽废水 | 30 | 小试 | 13 | 38.3 |
[ | |
市政废水 | 32 | 小试 | 19 | 17.1 | ||||
市政废水 | 15 | 小试 | 14 | 47.2 | ||||
市政废水 | 26 | 小试 | 12 | 27.2 | ||||
NH富集浓缩 | CEM | 电渗析 | 污泥浓缩液 | 650 | 小试 | 78 | 5.0 |
[ |
CEM | 电渗析 | 畜禽废水 | 478 | 小试 | 84 | 16.0 |
[ | |
CEM | 电渗析 | 垃圾渗滤液 | 2 542 | 中试 | 65 | 8.0 |
[ | |
CEM | 流动式电极电容去离子 | 合成废水 | 40 | 小试 | 89 | 23.6 |
[ | |
CEM | 流动式电极电容去离子 | 合成废水 | 43 | 小试 | 76 | 38.5 |
[ | |
NH3汽提 | CEM | 电渗析-物理吹脱 | 厌氧消化液 | 1 988 | 小试 | 63 | 26.0 |
[ |
CEM | 电渗析-物理吹脱 | 尿液 | 8 008 | 小试 | 75 | 12.7 |
[ | |
GPM | 流动式电极电容去离子-膜吹脱 | 市政污水 | 70 | 小试 | 55 | 21.7 |
[ | |
CEM、GPM | 电渗析-膜吹脱 | 尿液 | 3 990 | 小试 | 63 | 3.9 |
[ | |
CEM、GPM | 电渗析-膜吹脱 | 尿液 | 3 990 | 小试 | 96 | 5.1 | ||
CEM、GPM | 电渗析-膜吹脱 | 尿液 | 3 990 | 小试 | 73 | 15.6 |
[ | |
CEM、GPM | 电渗析-膜吹脱 | 尿液 | 3 990 | 小试 | 78 | 2.5 |
[ | |
CEM、GPM、BPM | 双极膜电渗析-膜吹脱 | 尿液 | 1 554 | 小试 | 78 | 5.1 |
[ | |
CEM、GPM、BPM | 双极膜电渗析-膜吹脱 | 污泥消化液 | 485 | 中试 | 40 | 6.3 |
[ | |
CEM、GPM、BPM | 双极膜电渗析-膜吹脱 | 尿液 | 717 | 中试 | 80 | 13.6 |
[ |

图3 不同电化学介导技术中氨氮的去除率与能耗关系
Fig. 3 Relationship between energy consumption and removal efficiency of ammonium nitrogen in different electrochemical mediated technologies
目前,围绕电化学介导氨氮回收技术的研发工作主要停留在实验室小试阶段,且主要围绕模拟废水开展,反应器规模放大及其面临实际废水挑战时的效能水平尚有待深入研究。建议未来从电化学系统元件开发、能量削减、功能拓展3个方面开展工作,推动技术系统的高质量变革(

图4 未来电介导技术在环境水处理应用方面的发展方向
Fig. 4 Development direction of electromediated technology in environmental water treatment
针对电化学氨氮回收技术中电极界面反应和氮素跨膜传质的理论研究已有较大突破,面对废水中复杂基质(有机物、无机盐、微生物等)的潜在干扰,高性能电极和膜材料亟待突破。现有研究多使用商业化元件,定制开发的电极或膜产品严重短缺。随着纳米材料成本的逐步下降、新型材料技术的不断涌现,潜在的材料研发方向包括(
以绿色供能替代或减少纯电能消耗,有望打造绿色低碳的电化学氨氮回收技术(
电化学系统在高质量实现氨氮回收过程中,还有进一步拓展功能的空间(
电化学介导的氨氮回收技术已逐渐成为污水处理行业减污降碳的研究热点。学者们基于电化学氨氮回收技术中NH/NH3迁移转化回收原理,分别从电化学阴极/阳极材料研发、分离膜(CEM、GPM和BPM等)辅助强化等角度入手,提升了氨去除/回收性能并降低了工艺能耗。富集浓缩NH、吹脱捕捉NH3及耦合二者的电化学系统有待深度研发。伴随化学材料与人工智能等领域的快速发展,通过多学科交叉融合,电化学氨氮回收技术有望在系统高性能元件开发、电能耗削减、处理功能强化等方面持续革新升级,并最终推动构建绿色清洁的污水资源化处理范式。
参考文献
YU C Q, HUANG X, CHEN H, et al. Managing nitrogen to restore water quality in China [J]. Nature, 2019, 567(7749): 516-520. [百度学术]
RIZZIOLI F, BERTASINI D, BOLZONELLA D, et al. A critical review on the techno-economic feasibility of nutrients recovery from anaerobic digestate in the agricultural sector [J]. Separation and Purification Technology, 2023, 306: 122690. [百度学术]
CHEN T L, CHEN L H, LIN Y J, et al. Advanced ammonia nitrogen removal and recovery technology using electrokinetic and stripping process towards a sustainable nitrogen cycle: A review [J]. Journal of Cleaner Production, 2021, 309: 127369. [百度学术]
CHEN G H. Electrochemical technologies in wastewater treatment [J]. Separation and Purification Technology, 2004, 38(1): 11-41. [百度学术]
CRUZ H, LAW Y Y, GUEST J S, et al. Mainstream ammonium recovery to advance sustainable urban wastewater management [J]. Environmental Science & Technology, 2019, 53(19): 11066-11079. [百度学术]
GADEKAR S, PULLAMMANAPPALLIL P. Validation and applications of a chemical equilibrium model for struvite precipitation [J]. Environmental Modeling & Assessment, 2010, 15(3): 201-209. [百度学术]
SHU J C, WU H P, CHEN M J, et al. Fractional removal of manganese and ammonia nitrogen from electrolytic metal manganese residue leachate using carbonate and struvite precipitation [J]. Water Research, 2019, 153: 229-238. [百度学术]
LIU B X, GIANNIS A, ZHANG J F, et al. Air stripping process for ammonia recovery from source-separated urine: Modeling and optimization [J]. Journal of Chemical Technology & Biotechnology, 2015, 90(12): 2208-2217. [百度学术]
GUŠTIN S, MARINŠEK-LOGAR R. Effect of pH, temperature and air flow rate on the continuous ammonia stripping of the anaerobic digestion effluent [J]. Process Safety and Environmental Protection, 2011, 89(1): 61-66. [百度学术]
ALHELAL I I, LOETSCHER L, SHARVELLE S, et al. Nitrogen recovery from anaerobic digestate via ammonia stripping and absorbing with a nitrified solution [J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107826. [百度学术]
LIU Y, HE L F, DENG Y Y, et al. Recent progress on the recovery of valuable resources from source-separated urine on-site using electrochemical technologies: A review [J]. Chemical Engineering Journal, 2022, 442: 136200. [百度学术]
LEDEZMA P, KUNTKE P, BUISMAN C J N, et al. Source-separated urine opens golden opportunities for microbial electrochemical technologies [J]. Trends in Biotechnology, 2015, 33(4): 214-220. [百度学术]
RADJENOVIC J, SEDLAK D L. Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water [J]. Environmental Science & Technology, 2015, 49(19): 11292-11302. [百度学术]
XIANG S Y, LIU Y H, ZHANG G M, et al. New progress of ammonia recovery during ammonia nitrogen removal from various wastewaters [J]. World Journal of Microbiology & Biotechnology, 2020, 36(10): 144. [百度学术]
DU J X, WAITE T D, FENG J, et al. Coupled electrochemical methods for nitrogen and phosphorus recovery from wastewater: A review [J]. Environmental Chemistry Letters, 2023, 21(2): 885-909. [百度学术]
RODRIGUES M, SLEUTELS T, KUNTKE P, et al. Effects of current on the membrane and boundary layer selectivity in electrochemical systems designed for nutrient recovery [J]. ACS Sustainable Chemistry & Engineering, 2022, 10(29): 9411-9418. [百度学术]
RATSOMA M S, POHO B L O, MAKGOPA K, et al. Application of nickel foam in electrochemical systems: A review [J]. Journal of Electronic Materials, 2023, 52(4): 2264-2291. [百度学术]
FANG K, GONG H, HE W Y, et al. Recovering ammonia from municipal wastewater by flow-electrode capacitive deionization [J]. Chemical Engineering Journal, 2018, 348: 301-309. [百度学术]
SUN K G, TEBYETEKERWA M, WANG C, et al. Electrocapacitive deionization: Mechanisms, electrodes, and cell designs [J]. Advanced Functional Materials, 2023. doi: 10.1002/adfm.202213578. [百度学术]
CHEN T Q, XU L Q, WEI S, et al. Ammonia-rich solution production from coal gasification gray water using Chemical-free Flow-Electrode capacitive deionization coupled with a monovalent cation exchange membrane [J]. Chemical Engineering Journal, 2022, 433: 133780. [百度学术]
PASTUSHOK O, RAMASAMY D, SILLANPÄÄ M, et al. Enhanced ammonium removal and recovery from municipal wastewater by asymmetric CDI cell equipped with oxygen functionalized carbon electrode [J]. Separation and Purification Technology, 2021, 274: 119064. [百度学术]
YU F, YANG Z Q, CHENG Y J, et al. A comprehensive review on flow-electrode capacitive deionization: Design, active material and environmental application [J]. Separation and Purification Technology, 2022, 281: 119870. [百度学术]
GENDEL Y, ROMMERSKIRCHEN A K E, DAVID O, et al. Batch mode and continuous desalination of water using flowing carbon deionization (FCDI) technology [J]. Electrochemistry Communications, 2014, 46: 152-156. [百度学术]
ZHANG C Y, MA J X, SONG J K, et al. Continuous ammonia recovery from wastewaters using an integrated capacitive flow electrode membrane stripping system [J]. Environmental Science & Technology, 2018, 52(24): 14275-14285. [百度学术]
KRUK D J, ELEKTOROWICZ M, OLESZKIEWICZ J A. Struvite precipitation and phosphorus removal using magnesium sacrificial anode [J]. Chemosphere, 2014, 101: 28-33. [百度学术]
TAN X, YU R T, YANG G, et al. Phosphate recovery and simultaneous nitrogen removal from urine by electrochemically induced struvite precipitation [J]. Environmental Science and Pollution Research International, 2021, 28(5): 5625-5636. [百度学术]
LI X W, ZHAO X, ZHOU X W, et al. Phosphate recovery from aqueous solution via struvite crystallization based on electrochemical-decomposition of nature magnesite [J]. Journal of Cleaner Production, 2021, 292: 126039. [百度学术]
RODRIGUES M, PARADKAR A, SLEUTELS T, et al. Donnan Dialysis for scaling mitigation during electrochemical ammonium recovery from complex wastewater [J]. Water Research, 2021, 201: 117260. [百度学术]
YANG K, QIN M H. The application of cation exchange membranes in electrochemical systems for ammonia recovery from wastewater [J]. Membranes, 2021, 11(7): 494. [百度学术]
VECINO X, REIG M, GIBERT O, et al. Integration of liquid-liquid membrane contactors and electrodialysis for ammonium recovery and concentration as a liquid fertilizer [J]. Chemosphere, 2020, 245: 125606. [百度学术]
KEDWELL K C, JØRGENSEN M K, QUIST-JENSEN C A, et al. Selective electrodialysis for simultaneous but separate phosphate and ammonium recovery [J]. Environmental Technology, 2021, 42(14): 2177-2186. [百度学术]
SBARDELLA L, BLANDIN G, FÀBREGAS A, et al. Optimization of pilot scale forward osmosis process integrated with electrodialysis to concentrate landfill leachate [J]. Chemical Engineering Journal, 2022, 434: 134448. [百度学术]
BIAN Y H, CHEN X, LU L, et al. Concurrent nitrogen and phosphorus recovery using flow-electrode capacitive deionization [J]. ACS Sustainable Chem Eng, 2019, 7(8): 7844-7850. [百度学术]
LEE J B, PARK K K, EUM H M, et al. Desalination of a thermal power plant wastewater by membrane capacitive deionization [J]. Desalination, 2006, 196(1/2/3): 125-134. [百度学术]
BIESHEUVEL P M, VAN DER WAL A. Membrane capacitive deionization [J]. Journal of Membrane Science, 2010, 346(2): 256-262. [百度学术]
CHEN C, DAI Z N, LI Y F, et al. Fouling-free membrane stripping for ammonia recovery from real biogas slurry [J]. Water Research, 2023, 229: 119453. [百度学术]
LIU M J, NEO B S, TARPEH W A. Building an operational framework for selective nitrogen recovery via electrochemical stripping [J]. Water Research, 2020, 169: 115226. [百度学术]
LEI X H, SUGIURA N, FENG C P, et al. Pretreatment of anaerobic digestion effluent with ammonia stripping and biogas purification [J]. Journal of Hazardous Materials, 2007, 145(3): 391-397. [百度学术]
HOU D X, JASSBY D, NERENBERG R, et al. Hydrophobic gas transfer membranes for wastewater treatment and resource recovery [J]. Environmental Science & Technology, 2019, 53(20): 11618-11635. [百度学术]
KUNTKE P, ZAMORA P, SAAKES M, et al. Gas-permeable hydrophobic tubular membranes for ammonia recovery in bio-electrochemical systems [J]. Environmental Science: Water Research & Technology, 2016, 2(2): 261-265. [百度学术]
GONZALEZ-SALGADO I, GUIGUI C, SPERANDIO M. Transmembrane chemical absorption technology for ammonia recovery from wastewater: A critical review [J]. Chemical Engineering Journal, 2022, 444: 136491. [百度学术]
CHRISTIAENS M E R, UDERT K M, ARENDS J B A, et al. Membrane stripping enables effective electrochemical ammonia recovery from urine while retaining microorganisms and micropollutants [J]. Water Research, 2019, 150: 349-357. [百度学术]
RODRIGUES M, LUND R, TER HEIJNE A, et al. Application of ammonium fertilizers recovered by an electrochemical system [J]. Resources Conservation and Recycling, 2022, 181: 106225. [百度学术]
LUO Y, LIU Y X, SHEN J N, et al. Application of bipolar membrane electrodialysis in environmental protection and resource recovery: A review [J]. Membranes, 2022, 12(9): 829. [百度学术]
VAN LINDEN N, BANDINU G L, VERMAAS D A, et al. Bipolar membrane electrodialysis for energetically competitive ammonium removal and dissolved ammonia production [J]. Journal of Cleaner Production, 2020, 259: 120788. [百度学术]
PÄRNAMÄE R, MAREEV S, NIKONENKO V, et al. Bipolar membranes: A review on principles, latest developments, and applications [J]. Journal of Membrane Science, 2021, 617: 118538. [百度学术]
LI Y J, WANG R Y, SHI S Y, et al. Bipolar membrane electrodialysis for ammonia recovery from synthetic urine: Experiments, modeling, and performance analysis [J]. Environmental Science & Technology, 2021, 55(21): 14886-14896. [百度学术]
CHEN T Y, BI J T, JI Z Y, et al. Application of bipolar membrane electrodialysis for simultaneous recovery of high-value acid/alkali from saline wastewater: An in-depth review [J]. Water Research, 2022, 226: 119274. [百度学术]
RODRIGUES M, DE MATTOS T T, SLEUTELS T, et al. Minimal bipolar membrane cell configuration for scaling up ammonium recovery [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(47): 17359-17367. [百度学术]
RODRIGUES M, MOLENAAR S, BARBOSA J, et al. Effluent pH correlates with electrochemical nitrogen recovery efficiency at pilot scale operation [J]. Separation and Purification Technology, 2023, 306: 122602. [百度学术]
MOUSSA SBEN, MAURIN G, GABRIELLI C, et al. Electrochemical precipitation of struvite [J]. Electrochemical and Solid-State Letters, 2006, 9(6): C97. [百度学术]
DOYLE J D, PARSONS S A. Struvite formation, control and recovery [J]. Water Research, 2002, 36(16): 3925-3940. [百度学术]
QIN M H, HE Z. Self-supplied ammonium bicarbonate draw solute for achieving wastewater treatment and recovery in a microbial electrolysis cell-forward osmosis-coupled system [J]. Environmental Science & Technology Letters, 2014, 1(10): 437-441. [百度学术]
WANG L, GU K H, ZHANG Y H, et al. Enhanced struvite generation and separation by magnesium anode electrolysis coupled with cathode electrodeposition [J]. The Science of the Total Environment, 2022, 804: 150101. [百度学术]
KÉKEDY-NAGY L, ENGLISH L, ANARI Z, et al. Electrochemical nutrient removal from natural wastewater sources and its impact on water quality [J]. Water Research, 2022, 210: 118001. [百度学术]
WARD A J, AROLA K, THOMPSON BREWSTER E, et al. Nutrient recovery from wastewater through pilot scale electrodialysis [J]. Water Research, 2018, 135: 57-65. [百度学术]
WANG D Z, LI T, YAN C M, et al. A novel bio-flocculation combined with electrodialysis process: Efficient removal of pollutants and sustainable resource recovery from swine wastewater [J]. Separation and Purification Technology, 2023, 304: 122330. [百度学术]
ZHANG C Y, MA J X, WAITE T D. Ammonia-rich solution production from wastewaters using chemical-free flow-electrode capacitive deionization [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 6480-6485. [百度学术]
DESLOOVER J, WOLDEYOHANNIS A A, VERSTRAETE W, et al. Electrochemical resource recovery from digestate to prevent ammonia toxicity during anaerobic digestion [J]. Environmental Science & Technology, 2012, 46(21): 12209-12216. [百度学术]
GILDEMYN S, LUTHER A K, ANDERSEN S J, et al. Electrochemically and bioelectrochemically induced ammonium recovery [J]. Journal of Visualized Experiments: JoVE, 2015(95): 52405. [百度学术]
RODRÍGUEZ ARREDONDO M, KUNTKE P, HEIJNE ATER, et al. Load ratio determines the ammonia recovery and energy input of an electrochemical system [J]. Water Research, 2017, 111: 330-337. [百度学术]
KUNTKE P, RODRÍGUEZ ARREDONDO M, WIDYAKRISTI L, et al. Hydrogen gas recycling for energy efficient ammonia recovery in electrochemical systems [J]. Environmental Science & Technology, 2017, 51(5): 3110-3116. [百度学术]
RODRIGUES M, SLEUTELS T, KUNTKE P, et al. Exploiting Donnan Dialysis to enhance ammonia recovery in an electrochemical system [J]. Chemical Engineering Journal, 2020, 395: 125143. [百度学术]
FERRARI F, PIJUAN M T, MOLENAAR S, et al. Ammonia recovery from anaerobic digester centrate using onsite pilot scale bipolar membrane electrodialysis coupled to membrane stripping [J]. Water Research, 2022, 218: 118504. [百度学术]
韩继龙, 曾祥杰, 王奎虎, 等. 复合膜材料在盐湖提锂中的研究进展和展望[J]. 复合材料学报, 2022, 39(5):2106-2120. [百度学术]
HAN J L, ZENG X J, WANG K H, et al. Research progress and prospect of membrane method in seawater/brine extraction of lithium [J]. Acta Materiae Compositae Sinica, 2022, 39(5):2106-2120. (in Chinese) [百度学术]
MU S, WANG S, LIANG S, et al. Effect of the relative degree of foulant “hydrophobicity” on membrane fouling [J]. Journal of Membrane Science, 2019, 570-571: 1-8. [百度学术]
HOU D X, IDDYA A, CHEN X, et al. Nickel-based membrane electrodes enable high-rate electrochemical ammonia recovery [J]. Environmental Science & Technology, 2018, 52(15): 8930-8938. [百度学术]
KIM K Y, MORENO-JIMENEZ D A, EFSTA-THIADIS H. Electrochemical ammonia recovery from anaerobic centrate using a nickel-functionalized activated carbon membrane electrode [J]. Environmental Science & Technology, 2021, 55(11): 7674-7680. [百度学术]
CHEN C, DONG T, HAN M Y, et al. Ammonium recovery from wastewater by Donnan Dialysis: A feasibility study [J]. Journal of Cleaner Production, 2020, 265: 121838. [百度学术]
CHEN C, HAN M Y, YAO J M, et al. Donnan dialysis-osmotic distillation (DD-OD) hybrid process for selective ammonium recovery driven by waste alkali [J]. Environmental Science & Technology, 2021, 55(10): 7015-7024. [百度学术]
DAI Z N, CHEN C, LI Y F, et al. Hybrid Donnan dialysis-electrodialysis for efficient ammonia recovery from anaerobic digester effluent [J]. Environmental Science and Ecotechnology, 2023, 15: 100255. [百度学术]
GEORG S, PUARI A T, HANANTYO M P G, et al. Low-energy ammonium recovery by a combined bio-electrochemical and electrochemical system[J]. Chemical Engineering Journal, 2023, 454(3): 140196. [百度学术]
BRILLAS E, SAULEDA R, CASADO J. Peroxi-coagulation of aniline in acidic medium using an oxygen diffusion cathode [J]. Journal of The Electrochemical Society, 1997, 144(7): 2374. [百度学术]
BOOPATHY R, SEKARAN G. Electrochemical treatment of reverse osmosis concentrate generated by the leather industry using a Cu-graphite electrode [J]. RSC Advances, 2014, 4(20): 9971-9979. [百度学术]
SHIRKOOHI M G, TYAGI R D, VANROLLE-GHEM P A, et al. Artificial intelligence techniques in electrochemical processes for water and wastewater treatment: A review [J]. Journal of Environmental Health Science & Engineering, 2022, 20(2): 1089-1109. [百度学术]
PIULEAC C G, RODRIGO M A, CAÑIZARES P, et al. Ten steps modeling of electrolysis processes by using neural networks [J]. Environmental Modelling & Software, 2010, 25(1): 74-81. [百度学术]