摘要
结构型高强铆钉具有预紧力稳定、防松性能优异、抗疲劳和抗延迟断裂能力强等优点,有望取代目前风电塔筒环法兰连接采用的高强螺栓,但其在法兰中的疲劳性能尚待相关研究检验。针对采用结构型高强铆钉的环法兰连接,开展对照性模型疲劳试验和精细化数值分析,探究其疲劳特性与劣化机理。基于环法兰荷载传递特征,在静载拉伸试验的基础上,开展12件模型试件的疲劳试验,包含高强螺栓和高强铆钉试件各6件;结合基于局部应变的SWT疲劳评价方法,开展精细化多尺度有限元分析。结果表明:两类试件的疲劳失效均易见于第一扣螺纹处;在200万次加载循环下,高强铆钉试件的平均等效疲劳强度为68.9 MPa,较高强螺栓的52.1 MPa提高约32.2%;由于高强铆钉与套环间的螺纹更加平缓且内、外螺纹间接触面积更大,更能有效降低螺纹根部应力集中,提升抗疲劳性能。对采用结构型高强铆钉的环法兰连接进行疲劳验算时,铆钉疲劳强度等级可取为FAT 56,配合指数常数m=3。
风力发电作为一种重要清洁能源,具有技术成熟、风险小、成本低且规模效益显著的特
通常,高强度螺栓的初始预紧力存在较大不确定性,且在机组运营过程中极易出现松弛,需要人工定期检查和维护,无法适应未来深远海风电技术发
作为一种新型连接形式,结构型高强度铆钉(简称“高强铆钉”)具有更好的轴力一致性、优异的防松性能以及更强的抗疲劳性
综上可知,随着风电建设的持续推进,其支撑塔筒环法兰连接中高强螺栓存在的易松弛、疲劳和延迟断裂等劣化问题日益凸显,阻碍了风电技术进一步发展。作为传统高强螺栓的有力升级替代品,高强铆钉能够从机理层面有效克服松弛和延迟断裂问题,其有效性已在高铁列车、高层建筑和桥梁等领域得到初步验证,但在风电领域尚缺乏相关试验研究以及支撑其进一步工程应用。基于此,笔者针对采用结构型高强铆钉的风电塔筒环法兰连接,在静载拉伸试验的基础上,开展对照性模型疲劳试验和精细化数值分析,探究其疲劳特性与劣化机理,提出相关工程建议。
为尽可能以最小试验成本真实模拟连接螺栓处的边界条件,依据某特大型风电塔筒设计方法,参考相关法兰试验模型设

(a) 侧视图

(b) 正视图

(c) 俯视图
图1 环法兰模型试件尺寸
Fig. 1 Configuration of model specimens for ring flanges

(a) 作动器连接端

(b) 工装填板
图2 模型试件固定工装
Fig. 2 Fix clamping for model specimens
试验采用的高强螺栓为10.9级M20钢结构用大六角头螺栓,高强铆钉采用与高强螺栓同规格等级。为检验高强度螺栓材料与高强铆钉的静力性能,选用本次试验的同批次试件,根据《金属材料拉伸试验第1部分:室温试验方法》(GB/T 228.1—2021
试件 | 抗拉强度Rm/MPa | 屈服强度Rp 0.2/MPa | 伸长率At/% | 断面收缩率Z/% | 弹性模量E/GPa |
---|---|---|---|---|---|
高强螺栓 | 1 133 | 987 | 15 | 55.1 | 206 |
高强铆钉 | 1 180 | 1 080 | 14 | 59.8 | 210 |
由于环法兰在螺栓预紧力作用下的偏心受力特性,筒壁荷载与螺栓力间存在较强的非线性关联,通常可采用“传递函数”(Load Transfer Function, LTF
模型试验加载如

图3 模型试件加载
Fig. 3 Loading of model specimens
试件编号 | 最大法兰力/kN | 最小法兰力/kN |
---|---|---|
HS-1~ HS-6 | 65 | 50 |
HR-1 | 60 | 40 |
HR-2 | 75 | 60 |
HR-3 | 80 | 65 |
HR-4 | 85 | 70 |
HR-5 | 90 | 75 |
HR-6 | 95 | 80 |
高强螺栓设计预紧力取155 kN,装配预紧力取设计值的1.1
静载试验中,在法兰背面安装应变片监测法兰受力,同时,利用压力环传感器实时测量螺栓内力变化,如

(a) 法兰应变片

(b) 压力传感器
图4 静载量测方案
Fig. 4 Instrument scheme of static test

图5 螺栓应变片布设
Fig. 5 Deployment of strain gauge on bolts
在静力拉伸试验加载过程中,通过安装电子式千分位移计,如

图6 试验位移计布置
Fig. 6 Deployment of test displacement meter
针对试验中高强螺栓与高强铆钉的疲劳破坏断口形貌,从宏观和细观层面进行分析,探究法兰连接中高强螺栓与高强铆钉的疲劳破坏特征。
高强螺栓宏观失效模式如

(a) 断裂位置1

(b) 断裂位置2
图7 高强螺栓疲劳破坏位置
Fig. 7 Fatigue failure location in high-strength bolt

(a) 断裂位置1

(b) 断裂位置2
图8 高强铆钉疲劳破坏位置
Fig. 8 Fatigue failure location in high-strength rivet
高强螺栓宏观断面如

(a) HS-1

(b) HS-2

(c) HS-3

(d) HS-4

(e) HS-5

(f) HS-6
图9 高强螺栓疲劳破坏宏观断口形貌
Fig 9 Fractography of high-strength bolts

(a) HR-1

(b) HR-2

(c) HR-3

(d) HR-4

(e) HR-5

(f) HR-6
图10 高强铆钉疲劳破坏宏观断口形貌
Fig. 10 Fractography of high-strength rivet
利用静载拉伸试验获得各组试件的法兰根部位移,如

图11 模型法兰根部位移
Fig 11 Root displacement of flange model
进一步地,采用有限元分析系统ABAQUS建立模型试件的3D有限元模型,如

图12 试件的3D有限元模型图
Fig. 12 3D Finite element model of specimens
通过静载试验测量两组传递函数,同时与有限元预测值进行对比分析,如

图13 传递函数实测值与有限元预测值对比
Fig. 13 Comparison between measured load transfer function and prediction by finite element methods
共测试12个模型试件,包含高强螺栓法兰模型和高强铆钉法兰模型各6件。当试件中单侧螺栓或铆钉出现疲劳断裂时,即认为试件失效而终止试验,此时的荷载循环次数即认为是疲劳寿命。
试件编号 | 最大螺栓力/kN | 最小螺栓力/kN | 试验应力幅/MPa | 试验寿命/万次 | 等效疲劳强度/MPa | 等效疲劳强度统计值/MPa |
---|---|---|---|---|---|---|
HS-1 | 191.5 | 170.3 | 86.5 | 68.7 | 60.6 |
平均值 标准差 特征值 变异系数 |
HS-2 | 191.5 | 170.3 | 86.5 | 50.6 | 50.7 | |
HS-3 | 191.5 | 170.3 | 86.5 | 66.4 | 59.9 | |
HS-4 | 191.5 | 170.3 | 86.5 | 26.0 | 43.8 | |
HS-5 | 191.5 | 170.3 | 86.5 | 28.0 | 44.9 | |
HS-6 | 191.5 | 170.3 | 86.5 | 36.0 | 48.8 |
试件编号 | 最大螺栓力/kN | 最小螺栓力/kN | 试验应力幅/MPa | 试验寿命/万次 | 等效疲劳强度/MPa | 等效疲劳强度统计值/MPa |
---|---|---|---|---|---|---|
HR-1 | 180.5 | 159.9 | 80.8 | 105.0 | 65.18 |
平均值 标准差 特征值 变异系数 |
HR-2 | 205.8 | 180.5 | 992.0 | 85.0 | 74.58 | |
HR-3 | 214.6 | 187.8 | 105.1 | 73.0 | 75.11 | |
HR-4 | 225.1 | 195.9 | 114.5 | 47.5 | 70.91 | |
HR-5 | 236.6 | 205.8 | 120.8 | 28.6 | 63.17 | |
HR-6 | 248.8 | 214.5 | 134.5 | 22.0 | 66.44 |
为直观对比起见,依据S-N曲线的对数准则,以200万次循环为基准进行等效疲劳强度换算,如
(1) |
式中:为200万次等效疲劳强度,简称为等效疲劳强度;和分别为实际加载应力幅和对应荷载循环次数;为S-N曲线的指数常数,取;为等效循环次数,取。
可以看出,高强螺栓在200万次的平均等效疲劳强度为52.1 MPa,而高强铆钉的相应疲劳强度为68.9 MPa,提高约32.2%。同时,两类试件的疲劳寿命均存在一定离散性,且高强铆钉试件的离散性相对较小。以等效疲劳强度的变异系数计,高强铆钉为0.07,较高强螺栓的0.13,显著降低约46.2%。
进一步地,采用的统计特征值(对应正态分布下的单侧97.7%存活率)作为疲劳强度下限指标进行分析,可知:高强铆钉的疲劳强度下限值为59.2 MPa,较高强螺栓的38.7 MPa,约提高53.0%,有效地保障了其在工程应用中的可靠性。
由于螺纹处存在,应力集中在试验加载中,法兰连接螺栓或铆钉虽整体处于弹性状态,其缺口处的局部应力极易超过屈服极限,进入塑性状态。因此,进行疲劳寿命预测时应考虑螺栓螺纹根部缺口区域的弹塑性应力-应变。根据基于局部应变场特征的SWT(循环弹塑性有限元)理
对于材料的弹塑性受力特征,其应力-应变关系可采用如
(2) |
式中:为循环强度系数;为循环应变硬化指数。
依据对光滑试件的材料试
(3) |
(4) |
(5) |
对于试验所用的高强螺栓和高强铆钉,采用文献[
材料 | 疲劳强度系数 | 疲劳延性系数 | 疲劳强度指数b | 疲劳延性指数c | 弹性模量E/GPa |
---|---|---|---|---|---|
40CrMo4 | 1 166 | 0.351 9 | -0.057 | -0.642 | 210 |
为进一步揭示两类模型试件的疲劳劣化机理,采用通用有限元分析系统ABAQUS,对两类试件建立精细化2D轴对称有限元模型,如

(a) 高强螺栓

(b) 高强铆钉
图14 2D轴对称有限元模型图
Fig. 14 2D axisymmetric finite element model
此外,各构件间装配采用“面-面”接触模拟,包括内外螺纹、套环/螺母与法兰,套环/螺母与垫片、垫片与法兰等。建立的有限元模型同时考虑内、外螺纹间的法向行为硬接触与切向行为罚接触。其中,螺纹间切向罚接触的摩擦系数对有限元预测值具有显著影响。参考相关SWT局部应力法分析文献[

图15 高强螺栓网格无关性检查
Fig. 15 Mesh insensitive test of high-strength bolts
(从左至右分别为0.05、0.10、0.15 mm)
(left to right: 0.05, 0.10, 0.15 mm)

图16 高强铆钉网格无关性检查
Fig.16 Mesh insensitive test of high-strength rivets
(从左至右分别为0.05、0.10、0.15 mm)
(left to right: 0.05, 0.10, 0.15 mm)
根据有限元数值求解,高强螺栓和高强铆钉试件的局部应力分布(最大应力)分别如

图17 高强螺栓局部最大应力图
Fig. 17 Local maximum stress of high-strength bolts

图18 高强铆钉局部最大应力图
Fig. 18 Local maximum stress of high-strength rivets
工程设计中,通常采用一定存活率下的应力幅-寿命曲线(也称为S-N或P-S-N曲线)验算构件在给定载荷下的疲劳寿
(6) |
式中:为应力幅;m为与材料有关的疲劳常数;为与试验有关的常数。
对
(7) |
进一步地,考虑97.7%存活率,可以得到
(8) |
式中:为的样本标准差。
采用SWT局部应变法,考虑不同应力幅水平,求解疲劳寿命N,依据
高强螺栓的数值S-N曲线公式为
(9) |
高强铆钉的数值S-N曲线公式为
(10) |
同样地,基于
高强螺栓实测拟合S-N曲线
(11) |
高强铆钉实测拟合S-N曲线
(12) |
进一步地,考虑试验数据离散性,依据
高强螺栓97.7%存活率下的P-S-N曲线公式为
(13) |
将等效疲劳寿命N=2×1
高强铆钉97.7%存活率下的P-S-N曲线公式为
(14) |
将等效疲劳寿命N=2×1

图19 高强螺栓S-N疲劳寿命预测与实测结果
Fig. 19 Predicted and measured S-N result of high-strength bolts

图20 高强铆钉S-N疲劳寿命预测与实测结果
Fig. 20 Predicted and measured S-N result of high-strength rivets
结果表明,SWT方法预测值较实测值更为保守,其拟合曲线与考虑存活率的设计曲线较为接近,两者趋势一致性较好,且绝大部分实测数据点位于SWT预测曲线上方,表明该方法可偏安全地应用于法兰疲劳寿命预测。综合上述预测与实测结果,参照欧规EC part 1-
针对采用新型高强铆钉的风电塔筒环法兰,系统地开展静力拉伸试验、模型疲劳试验和精细化数值分析,得到以下主要结论:
1)以200万次荷载循环计,高强铆钉的等效疲劳强度平均值为68.9 MPa,较同组高强螺栓提高32.2%;其实测疲劳强度变异系数约0.07,较同组高强螺栓降低46.2%。
2)两类试件呈现较一致的疲劳失效模式:除1个高强螺栓试件出现螺纹终止线开裂、1个高强铆钉试件顶帽底部疲劳外,其余10个试件中疲劳裂纹均萌生于第一扣螺纹根部。
3)高强铆钉的螺纹牙型更缓和且与套环间的内、外螺纹接触更紧密,有效地缓解了螺纹根部应力集中问题,从而显著提升了疲劳抗力。
4)综合模型试验数据与数值分析结果建议,对采用高强度铆钉的风电塔筒环法兰,可偏安全地采用FAT 56疲劳设计验算曲线,配合指数常数m=3。
针对风电塔筒环法兰中传统高强螺栓的失效隐患,就新型结构型高强铆钉的应用进行探索,初步提出可供设计参考的疲劳验算曲线。为对比起见,两类试件均采用相同设计和装配预紧力。后续研究中,可考虑充分利用高强铆钉预紧力的稳健性特征,合理提高设计预紧力,结合节段模型试验,更详细地模拟实际边界条件,开展更深入的探索。
参考文献
戴靠山, 王英, 黄益超, 等. 风力发电塔结构抗风抗震、健康监测和振动控制研究综述[J]. 特种结构, 2015, 32(3): 91-100. [百度学术]
DAI K S, WANG Y, HUANG Y C, et al. Summarization of wind and earthquake resistances, structural health monitoring and vibration control of wind turbine towers [J]. Special Structures, 2015, 32(3): 91-100. (in Chinese) [百度学术]
葛晨, 乔继红. 提振全球气候治理雄心的中国担当[N]. 新华每日电讯, 2020-12-13(2). [百度学术]
GE C, QIAO J H, China,s role in boosting global climate governance ambitions [N]. Xinhua Daily Telegraph, 2020-12-13(2). (in Chinese) [百度学术]
LANTZ E, ROBERTS O, NUNEMAKER J, et al. Increasing wind turbine tower heights: Opportunities and challenges: NREL/TP-5000-73629 [R/OL]. National Renewable Energy Laboratory (NREL), 2019. https://www.nrel.gov/docs/fy19osti/73629.pdf. [百度学术]
GOLLUB P, JENSEN J F, GIESE D, et al. Flanged foundation connection of the Offshore Wind Farm Amrumbank West-Concept, approval, design, tests and installation [J]. Stahlbau, 2014, 83(8): 522-528. [百度学术]
REDONDO R, MEHMANPARAST A. Numerical analysis of stress distribution in offshore wind turbine M72 bolted connections [J]. Metals, 2020, 10(5): 689. [百度学术]
LOCHAN S, MEHMANPARAST A, WINTLE J. A review of fatigue performance of bolted connections in offshore wind turbines [J]. Procedia Structural Integrity, 2019, 17: 276-283. [百度学术]
YU Z L, SUN P W, WANG D. Fatigue life prediction for flange connecting bolts of wind turbine tower [J]. Journal of Shanghai Jiaotong University (Science), 2020, 25(4): 526-530. [百度学术]
史文超, 丁宝平, 程茜, 等. 风电机组塔架高强螺栓应用中存在问题的分析[J].风能产业, 2013(9): 66-74. [百度学术]
SHI W C, DING B P, CHENG Q, et al. Analysis of problems existing in the application of high strength bolts for wind turbine tower [J]. Wind Energy Industry, 2013(9): 66-74. (in Chinese) [百度学术]
周舟, 杨理诚, 梁勇, 等. 大型风力机基础法兰高强度螺栓断裂失效分析[J]. 太阳能学报, 2016, 37(9): 2230-2235. [百度学术]
ZHOU Z, YANG L C, LIANG Y, et al. Fracture analysis on high-strength flange-bolts used in wind turbine foundation [J]. Acta Energiae Solaris Sinica, 2016, 37(9): 2230-2235. (in Chinese) [百度学术]
MEHMANPARAST A, LOTFIAN S, VIPIN S P. A review of challenges and opportunities associated with bolted flange connections in the offshore wind industry [J]. Metals, 2020, 10(6): 732. [百度学术]
SEIDEL M, SCHAUMANN P. Ermittlung der ermüdungsbeanspruchung von schrauben exzentrisch belasteter flanschverbindungen [J]. Stahlbau, 2001, 70(7): 474-486. [百度学术]
瞿伟廉, 秦文科, 郭佳凡. 高耸塔架结构节点联结螺栓松动等效模型研究[J]. 武汉理工大学学报, 2007, 29(1): 139-141. [百度学术]
QU W L, QIN W K, GUO J F. Research on equivalent model of high-rising tower structures on the bolted looseness [J]. Journal of Wuhan University of Technology, 2007, 29(1): 139-141. (in Chinese) [百度学术]
陈凯. 风电塔法兰螺栓松动对结构振动影响数值分析[D]. 哈尔滨: 中国地震局工程力学研究所, 2019. [百度学术]
CHEN K. Numerical analysis of the effect of flange bolt loosening on structural vibration of wind turbine tower [D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2019. (in Chinese) [百度学术]
孙永伟. 高强度螺栓用钢的氢扩散动力学及氢致延迟断裂控制技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2016. [百度学术]
SUN Y W. Study on the kinetics of hydrogen diffusion and control technology of hydrogen-induced delayed fracture of high strength bolt steels [D]. Harbin: Harbin Engineering University, 2016. (in Chinese) [百度学术]
ADEDIPE O, BRENNAN F, KOLIOS A. Review of corrosion fatigue in offshore structures: Present status and challenges in the offshore wind sector [J]. Renewable and Sustainable Energy Reviews, 2016, 61: 141-154. [百度学术]
林子倩, 卜宜都, 杨璐. 不锈钢连接节点研究现状与展望[C]//第二十二届全国现代结构工程学术研讨会论文集. 徐州, 2022: 141-146. [百度学术]
LIN Z Q, BU Y D, YANG L. A review of research on stainless steel connections and joints [C]//Proceedings of the 22nd National Symposium on Modern Structural Engineering, Xuzhou, 2022: 141-146. (in Chinese) [百度学术]
贾云龙, 张钦, 左世斌, 等. 海上风电装备用环槽铆钉连接结构防腐性能研究[J]. 风能, 2022(6): 74-78. [百度学术]
JIA Y L, ZHANG Q, ZUO S B, et al. Study on anticorrosion performance of ring groove rivet connection structure for offshore wind power equipment [J]. Wind Energy, 2022(6): 74-78. (in Chinese) [百度学术]
MARIAM M, AFENDI M, ABDUL MAJID M S, et al. Tensile and fatigue properties of single lap joints of aluminium alloy/glass fibre reinforced composites fabricated with different joining methods [J]. Composite Structures, 2018, 200: 647-658. [百度学术]
ZHU P H, ZHANG Q L, LUO X Q, et al. Experimental and numerical studies on ductile-fracture-controlled ultimate resistance of bars in aluminum alloy gusset joints under monotonic tensile loading [J]. Engineering Structures, 2020, 204: 109834. [百度学术]
SMITH S O, POTTICARY G, LEWIS G. Lockbolt qualification testing for wing panel assemblies [C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2000. [百度学术]
杨树森, 张光明, 刘煜. 拉铆钉及其在铁道车辆中的应用[J]. 铁道车辆, 2006, 44(12): 11-13, 49. [百度学术]
YANG S S, ZHANG G M, LIU Y. The pulling rivets and their application in rolling stock [J]. Rolling Stock, 2006, 44(12): 11-13, 49. (in Chinese) [百度学术]
易志宏, 刘浪, 田波, 等. 桥梁用高强度环槽铆钉抗剪承载力和疲劳特性试验研究[J]. 四川建筑, 2021, 41(5): 166-169. [百度学术]
YI Z H, LIU L, TIAN B, et al. Experimental study on shear capacity and fatigue characteristics of high strength ring-groove rivets for bridges [J]. Sichuan Architecture, 2021, 41(5): 166-169. (in Chinese) [百度学术]
张天雄, 王元清, 陈志华, 等. 高强度不锈钢短尾环槽铆钉力学性能试验研究[J]. 工程力学, 2021, 38(Sup1): 151-158. [百度学术]
ZHANG T X, WANG Y Q, CHEN Z H, et al. Experimental study on the mechanical properties of high strength stainless steel short tail swage-locking pins [J]. Engineering Mechanics, 2021, 38(Sup1): 151-158. (in Chinese) [百度学术]
王永岩, 张向峰, 闫蕾蕾, 等. 机车车辆Huck铆钉铆接件疲劳试验分析[J]. 石家庄铁道大学学报(自然科学版), 2017, 30(2): 63-67. [百度学术]
WANG Y Y, ZHANG X F, YAN L L, et al. Fatigue test analysis of huck rivet joint for locomotive and rolling stock [J]. Journal of Shijiazhuang Tiedao University (Natural Science Edition), 2017, 30(2): 63-67. (in Chinese) [百度学术]
王中兴. 铝合金结构环槽铆钉连接及梁柱节点受力机理与设计方法[D]. 清华大学, 2020. [百度学术]
WANG Z X. Mechanism and design of swage-locking pinned connections and beam-to-column joints in aluminium alloy structures [D]. Beijing: Tsinghua University, 2020. (in Chinese) [百度学术]
张钦, 贾云龙. 风电机组用新型紧固连接技术疲劳性能试验研究[J]. 东方汽轮机, 2020(4): 55-58. [百度学术]
ZHANG Q, JIA Y L. Experimental study on fatigue performance of new fastening technology for wind turbine [J]. Dongfang Turbine, 2020(4): 55-58. (in Chinese) [百度学术]
MADSEN C A, KRAGH-POULSEN J C, THAGE K J, et al. Analytical and numerical investigation of bolted steel ring flange connection for offshore wind monopile foundations [J]. IOP Conference Series: Materials Science and Engineering, 2017, 276: 012034. [百度学术]
ALONSO-MARTINEZ M, ADAM J M, ALVAREZ-RABANAL F P, et al. Wind turbine tower collapse due to flange failure: FEM and DOE analyses [J]. Engineering Failure Analysis, 2019, 104: 932-949. [百度学术]
徐祉康, 易伟同, 祝磊. 风力发电机组钢塔筒M64螺栓连接法兰受拉承载性能试验研究[J]. 建筑结构, 2021, 51(Sup1): 1522-1527. [百度学术]
XU Z K, YI W T, ZHU L. Experimental study on tensile bearing capacity of M64 bolted flange of wind turbine tower [J]. Building Structure, 2021, 51(Sup1): 1522-1527. (in Chinese) [百度学术]
TOBINAGA I, ISHIHARA T. A study of action point correction factor for L-type flanges of wind turbine towers [J]. Wind Energy, 2018, 21(9): 801-806. [百度学术]
BADRKHANI-AJAEI B, SOYOZ S. Effects of preload deficiency on fatigue demands of wind turbine tower bolts[J]. Journal of Constructional Steel Research, 2020, 166: 105933. [百度学术]
紧固件 螺栓和螺钉通孔: GB 5277—85 [S]. 北京:国家标准局, 1985. [百度学术]
Fasteners--Clearance holes for bolts and screws: GB 5277—85 [S]. Beijing: National Bureau of Standards, 1985. [百度学术]
金属材料 拉伸试验 第1部分: 室温试验方法: GB/T 228.1—2021 [S]. 北京: 中国标准出版社, 2021. [百度学术]
Metallic materials- Tensile testing- Part 1: Method of test at room temperature : GB/T 228.1—2021 [S]. Beijing: Standards Press of China, 2021. [百度学术]
WEIJTJENS W, STANG A, DEVRIENDT C, et al. Bolted ring flanges in offshore-wind support structures-In situ validation of load-transfer behaviour [J]. Journal of Constructional Steel Research, 2021, 176: 106361. [百度学术]
VAN LONG H, JEAN-PIERRE J, JEAN-FRANÇOIS D. Behaviour of bolted flange joints in tubular structures under monotonic, repeated and fatigue loadings I: Experimental tests [J]. Journal of Constructional Steel Research, 2013, 85: 1-11. [百度学术]
PAVLOVIĆ M, HEISTERMANN C, VELJKOVIĆ M, et al. Connections in towers for wind converters, part I: Evaluation of down-scaled experiments [J]. Journal of Constructional Steel Research, 2015, 115: 445-457. [百度学术]
JI X D, ZOU T, BAI X, et al. Fatigue assessment of flange connections in offshore wind turbines under the initial flatness divergence [J]. Frontiers in Energy Research, 2023, 11: 1127957. [百度学术]
张天雄, 王元清, 陈志华, 等. 不锈钢高强度螺栓机械性能与施拧方法试验研究[J]. 工业建筑, 2022, 52(7): 98-105, 97. [百度学术]
ZHANG T X, WANG Y Q, CHEN Z H, et al. Experimental research on mechanical properties and tightening methods of stainless steel high-strength bolts [J]. Industrial Construction, 2022, 52(7): 98-105, 97. (in Chinese) [百度学术]
焦晋峰, 刘展翔, 刘丹, 等. 预紧力缺失对8.8级M24高强度螺栓常幅疲劳性能影响分析[J]. 西安建筑科技大学学报(自然科学版), 2022, 54(1): 35-44. [百度学术]
JIAO J F, LIU Z X, LIU D, et al. Analysis of the influence of the pre-tension loss on the constant-amplitude fatigue performance of grade 8.8 M24 high-strength bolts [J]. Journal of Xi’an University of Architecture & Technology (Natural Science Edition), 2022, 54(1): 35-44. (in Chinese) [百度学术]
SCHAUMANN P, EICHSTÄDT R. Fatigue assessment of high-strength bolts with very large diameters in substructures for offshore wind turbines [C]//The Twenty-fifth International Ocean and Polar Engineering Conference. OnePetro, 2015. [百度学术]
SMITH K N S, WATSON P, TOPPER T H. Stress-strain function for the fatigue of metals [J]. Journal of Materials, 1970, 5(4): 767-778. [百度学术]
BRANCO R, COSTA J D, BORREGO L P, et al. Comparison of different one-parameter damage laws and local stress-strain approaches in multiaxial fatigue life assessment of notched components [J]. International Journal of Fatigue, 2021, 151: 106405. [百度学术]
SCHAUMANN P, EICHSTÄDT R, STANG A. Advanced performance assessment methods for high-strength bolts in ring-flange connections [J]. Stahlbau, 2018, 87(5): 446-455. [百度学术]
DOWLING N E. Local strain approach to fatigue [M]//Comprehensive Structural Integrity. Amsterdam: Elsevier, 2003: 77-94. [百度学术]
LANG K H, KORN M, ROHM T. Very high cycle fatigue resistance of the low alloyed steel 42CrMo4 in medium- and high-strength quenched and tempered condition [J]. Procedia Structural Integrity, 2016, 2: 1133-1142. [百度学术]
SCHNEIDER R, WUTTKE U, BERGER C. Fatigue analysis of threaded connections using the local strain approach [J]. Procedia Engineering, 2010, 2(1): 2357-2366. [百度学术]
杨新华, 陈传尧. 疲劳与断裂[M]. 2版. 武汉: 华中科技大学出版社, 2018. [百度学术]
YANG X H, CHEN C Y. Fatigue and fracture [M]. 2nd ed. Wuhan: Huazhong University of Science and Technology Press, 2018. (in Chinese) [百度学术]
Eurocode 3: Design of steel structures-Part 1-9: Fatigue: CEN/TC250: EN 1993-1-9 [S]. Brussels, 2005. [百度学术]