摘要
基于强氧化剂的化学氧化技术是实现难降解有机污染物去除的有效手段。相比臭氧等气态氧化剂和过氧化氢等液态氧化剂,高锰酸盐等固态氧化剂具有寿命长、使用方便、泄漏风险低等优点,在去除水中难降解有机污染物方面极具优势。近年来,为进一步提高固态氧化剂去除难降解污染物的效能,通过添加还原性介体的方法增强氧化剂对有机污染物转化去除得到普遍认可,尤其是其在降解有机新污染物方面展现出的良好强化效能。为了促进该领域全面深入的研究,指导还原性介体强化法在水处理工程中更切合实际的推广与应用,对水处理领域涉及的几种还原性介体与固态氧化剂高锰酸盐、高铁酸盐和高碘酸盐的组合体系进行详细介绍与总结,并对还原性介体强化固态氧化剂体系在实际水处理工程中的应用进行总结与评述。

在水处理领域,化学氧化具有高效、适用性广和可控性高等优势。相比气态氧化剂(如臭氧(O3
在基于高锰酸盐的有机污染物氧化去除过程中,Mn(Ⅶ)转换为三价锰Mn(Ⅲ)、四价锰Mn(Ⅳ)和五价锰Mn(Ⅴ)等活性中间态锰,进一步可以协同强化Mn(Ⅶ)去除水中的有机污染物。在此过程中,还原性金属离子、无机非金属还原性物质和有机氧化还原介体等还原性介体的添加可强化Mn(Ⅶ)降解有机污染物的能力,不同还原性介体的强化效果与作用机制存在一定的差异。
Ru(Ⅲ)可以增强Mn(Ⅶ)对有机污染物的氧化效能,主要作用机制为Mn(Ⅶ)能迅速氧化Ru(Ⅲ),转化为高价态Ru,可以显著促进富电子有机污染物的降解。但Ru(Ⅲ)溶液的投加增大了水体的环境风险,且难以回收利用。为了控制其在实际应用中的使用风险,Zhang
Pb(Ⅱ)与Ru(Ⅲ)相似,Mn(Ⅶ)氧化Pb(Ⅱ),首先形成高反应性的Pb(Ⅲ)中间体,随后不稳定的Pb(Ⅲ)中间体进一步分解形成Pb(Ⅳ)和Pb(Ⅱ

(a) Ru(Ⅲ)强化Mn(Ⅶ)的反应机

(b) Pb(Ⅱ)强化Mn(Ⅶ)的反应机
图1 还原性金属离子强化Mn(Ⅶ)
Fig. 1 Enhanced Mn(Ⅶ) by reducing metal ions
Fe(Ⅱ)和Mn(Ⅱ)的存在能增强pH值为5时Mn(Ⅶ)对双氯芬酸(DCF)的氧化作用,主要是由于Fe(Ⅱ)和Mn(Ⅱ)自身的还原性能加速了Mn(Ⅶ)体系中原位MnO2的生成,从而促进Mn(Ⅶ)在酸性条件下对有机污染物的氧
亚硫酸(氢)盐(S(Ⅳ),HSO

图2 S(Ⅳ)强化Mn(Ⅶ)的反应过
Fig. 2 Enhanced Mn(Ⅶ) by S(Ⅳ
为克服Mn(Ⅶ)/S(Ⅳ)体系在pH值和S(Ⅳ)浓度上的局限性,Rao
过氧化氢(H2O2)作为单电子氧化剂时会被还原为相应的氧化性自由基

图3 H2O2强化Mn(Ⅶ)的反应过
Fig. 3 Enhanced Mn(Ⅶ) by H2O
氧化还原介体是一类能够将电子从电子供体逆传递给电子受体,加速电子传递的化合物。在Mn(Ⅶ)体系中,氧化还原介体可以加速原位生成MnO2且自身转化为高活性中间体,协同降解污染物。目前已经报道天然氧化还原介体(如丁香醛(SYD)、香草醛(VAN)和4-羟基香豆素(4HC)等)以及合成氧化还原介体(如2,2'-嗪基-双(3-乙基苯并噻唑啉)-6-磺酸盐(ABTS)、1-羟基苯并三唑(HBT)、2,2,6,6-四甲基哌啶-N-氧基(TEMPO)、9-氮杂双环[3.3.1]壬烷-N-氧基自由基(ABNO)和2-苯基-4,4,5,5-四甲基咪唑啉-3-氧代-1-氧(PTIO)等)均能有效激活Mn(Ⅶ

图4 氧化还原介体强化Mn(Ⅶ)的反应过程
Fig. 4 Enhanced Mn(Ⅶ) by redox mediators
Mn(Ⅶ)单独氧化有机物时,所需氧化剂投加量较高,水体色度会显著升高,应用局限性较大。在实际生产中,常选用高锰酸钾进行预氧化,联合其他技术来强化常规处理工艺对有机物、藻类等的去除。其中Mn(Ⅶ)与还原性介体的联用有效提高了对污染物的氧化效能,但还原性介体的引入可能会带来一些环境风险,如Ru浸出和含N有机副产物的形成。因此,在今后的工作中,应对这些技术进行环境风险评价。
氧化剂 | 还原性介体 | 技术优点 | 缺点 | 参考文献 | |
---|---|---|---|---|---|
Mn(Ⅶ) | 还原性金属离子 | Ru(Ⅲ)、Pb(Ⅱ) | 生成高活性的Ru(Ⅶ)、Pb(Ⅲ),宽pH值范围内有效快速去除污染物 | 重金属污染 |
[ |
[ | |||||
Fe(Ⅱ)、Mn(Ⅱ) | 生成原位MnO2,显著强化酸性条件下污染物的氧化,同步去除水中铁锰离子 | 出水色度高 |
[ | ||
无机非金属还原物 | S(Ⅳ) | 迅速生成中间态锰和自由基,适用多种污染物 | 硫酸盐浓度可能超标 |
[ | |
H2O2 |
生成Mn(Ⅵ)和O | 活性物质目前存在争议 |
[ | ||
有机氧化还原介体 | TEMPO |
生成TEMP | 造成水体二次污染,仅对富电子污染物有效,局限性大 |
[ | |
HBT |
[ | ||||
ABTS |
[ |
单独Fe(Ⅵ)的处理效率受反应条件影响很大,甚至难以去除某些有机污染
低价还原性金属离子可以增强Fe(Ⅵ)对有机污染物的氧化效
Zhao
与Ru(Ⅲ)相似,Cu(Ⅱ)离子在中性至碱性条件下可被氧化生成高活性单电子氧化剂Cu(Ⅲ),进而促进有机物的强化去

(a) Ru(Ⅲ)强化Fe(Ⅵ)的反应机

(b) Cu(Ⅱ)强化Fe(Ⅵ)的反应机

(c) Mn(Ⅱ)强化Fe(Ⅵ)的反应机
图5 还原性金属离子强化Fe(Ⅵ)的反应过程
Fig. 5 Enhanced Fe(Ⅵ) by reducing metal ions
Mn(Ⅱ)离子的存在可以提高Fe(Ⅵ)对有机污染物的氧化效率,在pH值为7.0时,在引入等量的Mn(Ⅱ)后,Fe(Ⅵ)可以显著提高Fe(Ⅵ)体系对多种酚类污染物的氧化效率,Mn(Ⅱ)强化Fe(Ⅵ)的机制是:Fe(Ⅵ)的自衰变减弱且稳定性增强,以及高活性Mn(Ⅶ)/Mn(Ⅲ)的生
S(Ⅳ)具有活化Fe(Ⅵ)的能力,Fe(Ⅵ)/S(Ⅳ)体系可以产生RFeS(即Fe(Ⅴ)和Fe(Ⅳ))及自由基(SO
Fe(Ⅵ)自衰变产生的原位H2O2可以进一步将Fe(Ⅵ)和Fe(Ⅳ)转化为Fe(Ⅳ)和Fe(Ⅱ

(a) S(Ⅳ)强化Fe(Ⅵ)的反应过

(b) H2O2强化Fe(Ⅵ)的反应过
图6 S(Ⅳ)和H2O2强化Fe(Ⅵ)的反应过程
Fig. 6 Enhanced Fe(Ⅵ) by S(Ⅳ) and H2O2
已有报道中有机氧化还原介体ABTS和HBT可以显著增强Fe(Ⅵ)氧化体系对有机污染物的降
在该体系中,改变[ABTS]0/[Fe(Ⅵ)]0摩尔比则可调控主要氧化活性物种为Fe(Ⅳ)或Fe(Ⅴ

(a) ABTS强化Fe(Ⅵ)的反应过

(b) HBT强化Fe(Ⅵ)的反应过
图7 氧化还原介体强化Fe(Ⅵ)的反应过程
Fig. 7 Enhance Fe(Ⅵ) by redox mediators
Fe(Ⅵ)能够有效去除水中有毒有害污染物,还原产物Fe(OH)3无毒害且对水体具有絮凝作用,是一种“绿色氧化剂”。但Fe(Ⅵ)自分解速率快,现场制备成本高,在实际应用中投加量高于预期。为弥补Fe(Ⅵ)在应用上的缺陷,目前的研究聚焦在与其他技术的联合上,联合工艺能够有效提高污染物去除率且减少Fe(Ⅵ)用量。
氧化剂 | 还原性介体 | 技术优点 | 缺点 | 参考文献 | |
---|---|---|---|---|---|
Fe(Ⅵ) | 还原性金属离子 | Ru(Ⅲ) | 生成高活性的Ru(Ⅴ)、Cu(Ⅲ),中性pH范围内即可高效降解微污染物 | 重金属污染 |
[ |
Cu(Ⅱ) |
[ | ||||
Mn(Ⅱ) | 生成Mn(Ⅶ)/Mn(Ⅲ)同时稳定Fe(Ⅵ),提高了Fe(Ⅵ)的利用效率 | 活性铁锰难以区分 |
[ | ||
无机非金属还原物 | S(Ⅳ) | 迅速生成中间态铁和自由基,体系氧化能力强 | 硫酸盐浓度可能超标 |
[ | |
H2O2 | 生成Fe(Ⅴ)/Fe(Ⅳ),H2O2最终变为无害的O2 | 对腐殖酸的抵抗能力弱 |
[ | ||
有机氧化还原介体 | ABTS | 通过电子转移快速生成Fe(Ⅴ)/Fe(Ⅳ),高效降解污染物,适用水质范围广 | 对水体产生二次污染 |
[ | |
HBT | 单电子转移形成Fe(Ⅴ),氧化性能优良且稳定 | 对腐殖酸抵抗性很弱 |
[ |
高碘酸盐(PI,IO
具有不同氧化态的金属离子是激活PI的理想选择之一。Li

(a) Ru(Ⅲ)强化PI的反应过

(b) Fe(Ⅱ)强化PI的反应过
图8 还原性金属离子强化PI的反应过程
Fig. 8 Enhance PI by reducing metal ions
Fe(Ⅱ)离子也是增强PI对多种有机污染物氧化的有效过渡金属之一,但Fe(Ⅱ)/PI体系仅在酸性条件时表现出高反应
研究表明,与Fe同系的Mn也具有较好的PI活化性能,且Mn(Ⅱ)/PI体系具有宽pH值适用性,体系气氛对主要活性物种具有较强的调控作
H2O2与PI一起使用时,可以作为还原物质来强化PI,实现对有机污染物的降
羟胺(HA)能提供一个电子或氢原
ABTS可以通过单电子转移激活PI,产生ABT
邻醌类有机物被认为可以参与磺胺类抗生素的转化,而PI能够靶向氧化邻二羟基结构(如邻苯二酚(CAT)),通过形成IO
值得注意的是,上述还原性介体强化PI的体系中,均可通过调节反应物的摩尔比,使IO
氧化剂 | 还原性介体 | 技术优点 | 缺点 | 参考文献 | |
---|---|---|---|---|---|
PI | 还原性金属离子 | Ru(Ⅲ) | 生成Ru(Ⅴ),宽pH值范围内高效去污 | 价格昂贵,重金属污染 |
[ |
Fe(Ⅱ) | 生成Fe(Ⅳ),与芬顿/类芬顿体系相比,降解污染物的性能更强 | pH适用范围小、Fe(Ⅱ)投加量大和利用率低 |
[ | ||
Mn(Ⅱ) | 生成原位胶体MnO2,多种富电子污染物适用 | Mn(Ⅱ)投加量大,需后处理 |
[ | ||
无机非金属还原物 | H2O2 |
生 | 试剂投加量大 |
[ | |
HA |
生 | 试剂投加量大,水体酸化 |
[ | ||
有机氧化还原介体 | ABTS |
生成ABT | 成本高,试剂投加量大 |
[ | |
CAT | 生成邻苯醌,对水基质变化抗性强,CAT及其衍生物在自然界中广泛存在 | 酸或碱性条件下降解能力明显下降 |
[ |
Mn(Ⅶ)、Fe(Ⅵ)和PI被还原性介体强化时表现出一些相似的特性,比如,均可活化Ru(Ⅲ)、H2O2和ABTS等。其中,Mn(Ⅶ)和Fe(Ⅵ)均为过渡金属的最高价态含氧酸盐,化学性质上更为相似,在与还原性介体反应时自身均可还原成高活性的中间态,另外,由于Fe(Ⅵ)的氧化还原电位高于Mn(Ⅶ),Fe(Ⅵ)可将Mn(Ⅱ)氧化为Mn(Ⅶ)。Mn(Ⅶ)与PI的中心元素均为+7价,结构特点更为相似,当有机氧化还原介体引入时,体系中的主要活性物质是生成的有机自由基,而Fe(Ⅵ)则主要是电子转移产生的Fe(Ⅳ)或Fe(Ⅴ)。
还原性介体可有效强化Mn(Ⅶ)、Fe(Ⅵ)和PI氧化体系,具有极大的实际应用潜力。然而,目前仍存在以下问题:
1)氧化体系中的关键活性物种仍存在一些争议,如H2O2/Mn(Ⅶ)体系中O
2)还原性介体的引入可能产生的生态环境风险。铁、锰等常见金属离子的引入可以加强氧化污染物同时同步去除铁、锰,但铅、钌等可能产生重金属污染;无机非金属还原物的引入极大地提高了反应效能和氧化能力,但羟胺、亚砷酸盐等本身的毒性可能对水生环境产生不利影响;有机氧化还原介体的引入在强化氧化的同时还提高了体系的可生化性,但其可能产生含N有机副产物,导致二次污染。因此,在实际应用前,需对其进行环境风险评价,同时注重水处理单元集成设计、多元污染物协同去除工艺开发、绿色高效非均相可回收催化剂优化合成等,实现潜在风险的有效控制。
3)当前的氧化工艺大多只能有效降解富电子有机污染物,且矿化程度不高,如何提高有机污染物的矿化率以及降解缺电子有机污染物,是今后研究的重点方向。
总之,尽管还原物质强化固体氧化剂的有机污染物氧化控制体系在处理新兴有机污染物方面表现出很好的应用潜力,但仍需进一步研究,以解决实际应用中面临的瓶颈问题。
参考文献
CAO Q, SANG L, TU J C, et al. Rapid degradation of refractory organic pollutants by continuous ozonation in a micro-packed bed reactor [J]. Chemosphere, 2021, 270: 128621. [百度学术]
WU Z H, GUO K H, FANG J Y, et al. Factors affecting the roles of reactive species in the degradation of micropollutants by the UV/chlorine process [J]. Water Research, 2017, 126: 351-360. [百度学术]
YAN J C, TANG H Q, LIN Z F, et al. Efficient degradation of organic pollutants with ferrous hydroxide colloids as heterogeneous Fenton-like activator of hydrogen peroxide [J]. Chemosphere, 2012, 87(2): 111-117. [百度学术]
HUANG Q, MENG G Y, ZHANG X W, et al. Natural manganese sand activates sodium hypochlorite to enhance ionic organic contaminants removal: Optimization, modeling, and mechanism [J]. The Science of the Total Environment, 2023, 866: 161310. [百度学术]
KIM J, ZHANG T Q, LIU W, et al. Advanced oxidation process with peracetic acid and Fe(Ⅱ) for contaminant degradation [J]. Environmental Science & Technology, 2019, 53(22): 13312-13322. [百度学术]
YUN E T, YOO H Y, BAE H, et al. Exploring the role of persulfate in the activation process: Radical precursor versus electron acceptor [J]. Environmental Science & Technology, 2017, 51(17): 10090-10099. [百度学术]
WANG Y S, QIU W, LU X H, et al. Nitrilotriacetic acid-assisted Mn(Ⅱ) activated periodate for rapid and long-lasting degradation of carbamazepine: The importance of Mn(Ⅳ)-oxo species [J]. Water Research, 2023, 241: 120156. [百度学术]
TIAN S Q, WANG L, LIU Y L, et al. Degradation of organic pollutants by ferrate/biochar: Enhanced formation of strong intermediate oxidative iron species [J]. Water Research, 2020, 183: 116054. [百度学术]
ZHANG J, SUN B, GUAN X H, et al. Ruthenium nanoparticles supported on CeO2 for catalytic permanganate oxidation of butylparaben [J]. Environmental Science & Technology, 2013, 47(22): 13011-13019. [百度学术]
ZHANG J, SUN B, XIONG X M, et al. Removal of emerging pollutants by Ru/TiO2-catalyzed permanganate oxidation [J]. Water Research, 2014, 63: 262-270. [百度学术]
MOSSERI S, HENGLEIN A, JANATA E. Trivalent lead as an intermediate in the oxidation of lead(Ⅱ) and the reduction of lead(Ⅳ) species [J]. The Journal of Physical Chemistry, 1990, 94(6): 2722-2726. [百度学术]
DONG L, XIE P, ZHANG X, et al. Co-present Pb(Ⅱ) accelerates the oxidation of organic contaminants by permanganate: Role of Pb(Ⅲ) [J]. Frontiers of Environmental Science & Engineering, 2022, 16(8): 109. [百度学术]
SUN B, RAO D D, SUN Y H, et al. Auto-accelerating and auto-inhibiting phenomena in the oxidation process of organic contaminants by permanganate and manganese dioxide under acidic conditions: Effects of manganese intermediates/products [J]. RSC Advances, 2016, 6(67): 62858-62865. [百度学术]
HUANG R, GUAN C T, GUO Q, et al. Oxidation of diclofenac by permanganate: Kinetics, products and effect of inorganic reductants [J]. Chinese Chemical Letters, 2023, 34(4): 107610. [百度学术]
DUAN S L, DONG H Y, HOU P, et al. Is Mn(Ⅲ) a principal oxidant for trace organic contaminant abatement in permanganate/bisulfate process? [J]. Chemical Engineering Journal, 2022, 433: 134548. [百度学术]
CHEN J, RAO D D, DONG H Y, et al. The role of active manganese species and free radicals in permanganate/bisulfite process [J]. Journal of Hazardous Materials, 2020, 388: 121735. [百度学术]
SUN B, GUAN X H, FANG J Y, et al. Activation of manganese oxidants with bisulfite for enhanced oxidation of organic contaminants: The involvement of Mn(Ⅲ) [J]. Environmental Science & Technology, 2015, 49(20): 12414-12421. [百度学术]
GAO Y, JIANG J, ZHOU Y, et al. Unrecognized role of bisulfite as Mn(Ⅲ) stabilizing agent in activating permanganate (Mn(Ⅶ)) for enhanced degradation of organic contaminants [J]. Chemical Engineering Journal, 2017, 327: 418-422. [百度学术]
GUAN C T, GUO Q, WANG Z, et al. Bisulfite activated permanganate for oxidative water decontamination [J]. Water Research, 2022, 216: 118331. [百度学术]
RAO D D, CHEN J, DONG H Y, et al. Enhanced oxidation of organic contaminants by Mn(Ⅶ)/CaSO3 under environmentally relevant conditions: Performance and mechanisms [J]. Water Research, 2021, 188: 116481. [百度学术]
GAO Y, ZHOU Y, PANG S Y, et al. New insights into the combination of permanganate and bisulfite as a novel advanced oxidation process: importance of high valent manganese-oxo species and sulfate radical [J]. Environmental Science & Technology, 2019, 53(7): 3689-3696. [百度学术]
JEONG J, JUNG J, COOPER W J, et al. Degradation mechanisms and kinetic studies for the treatment of X-ray contrast media compounds by advanced oxidation/reduction processes [J]. Water Research, 2010, 44(15): 4391-4398. [百度学术]
XU K, VON GUNTEN U. Permanganate reduction by hydrogen peroxide: Formation of reactive manganese species and superoxide and enhanced micropollutant abatement [J]. ACS ES & T Engineering, 2021, 1(10): 1410-1419. [百度学术]
SIMOYI R H, DE KEPPER P, EPSTEIN I R, et al. Reaction between permanganate ion and hydrogen peroxide: Kinetics and mechanism of the initial phase of the reaction [J]. Inorganic Chemistry, 1986, 25(4): 538-542. [百度学术]
VAN BENSCHOTEN J E, LIN W, KNOCKE W R. Kinetic modeling of manganese(Ⅱ) oxidation by chlorine dioxide and potassium permanganate [J]. Environmental Science and Technology, 1992, 26(7): 1327-1333. [百度学术]
WANG M X, TAN W F, FENG X H, et al. One-step synthesis of sea urchin-like α-MnO2 using KIO4 as the oxidant and its oxidation of arsenite [J]. Materials Letters, 2012, 77: 60-62. [百度学术]
ZONG Y, SHAO Y F, ZENG Y Q, et al. Enhanced oxidation of organic contaminants by iron(Ⅱ)-activated periodate: The significance of high-valent iron-oxo species [J]. Environmental Science & Technology, 2021, 55(11): 7634-7642. [百度学术]
SONG Y, JIANG J, MA J, et al. ABTS as an electron shuttle to enhance the oxidation kinetics of substituted phenols by aqueous permanganate [J]. Environmental Science & Technology, 2015, 49(19): 11764-11771. [百度学术]
SHI Z Y, JIN C, BAI R P, et al. Enhanced transformation of emerging contaminants by permanganate in the presence of redox mediators [J]. Environmental Science & Technology, 2020, 54(3): 1909-1919. [百度学术]
ZHANG H L, SHI Z Y, BAI R P, et al. Role of TEMPO in enhancing permanganate oxidation toward organic contaminants [J]. Environmental Science & Technology, 2021, 55(11): 7681-7689. [百度学术]
ZHANG H L, MA J, ZHANG J, et al. ABNO-functionalized silica as an efficient catalyst for enhancing permanganate oxidation of emerging contaminants [J]. Environmental Science & Technology, 2023, 57(1): 635-642. [百度学术]
ZHAO L, ZHANG J, MA J. PTIO as a redox mediator to enhance organic contaminants oxidation by permanganate [J]. Water Research, 2023, 244: 120500. [百度学术]
YANG B, YING G G, ZHAO J L, et al. Removal of selected endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) during ferrate(Ⅵ) treatment of secondary wastewater effluents [J]. Water Research, 2012, 46(7): 2194-2204. [百度学术]
ZHAO J, ZHANG H, SHI Y, et al. Efficient activation of ferrate by Ru(Ⅲ): Insights into the major reactive species and the multiple roles of Ru(Ⅲ) [J]. Journal of Hazardous Materials, 2023, 458: 131927. [百度学术]
SHI Z Y, WANG D X, GAO Z Q, et al. Enhanced ferrate oxidation of organic pollutants in the presence of Cu(Ⅱ) Ion [J]. Journal of Hazardous Materials, 2022, 433: 128772. [百度学术]
ZHAO X N, HUANG Z S, WANG G J, et al. Highly efficient utilization of ferrate(Ⅵ) oxidation capacity initiated by Mn(Ⅱ) for contaminant oxidation: Role of manganese species [J]. Environmental Science & Technology, 2023, 57(6): 2527-2537. [百度学术]
FENG Y, QING W H, KONG L J, et al. Factors and mechanisms that influence the reactivity of trivalent copper: A novel oxidant for selective degradation of antibiotics [J]. Water Research, 2019, 149: 1-8. [百度学术]
WANG L H, XU H D, JIANG N, et al. Trace cupric species triggered decomposition of peroxymonosulfate and degradation of organic pollutants: Cu(Ⅲ) being the primary and selective intermediate oxidant [J]. Environmental Science & Technology, 2020, 54(7): 4686-4694. [百度学术]
FENG M B, SHARMA V K. Enhanced oxidation of antibiotics by ferrate(Ⅵ)-sulfur(Ⅳ) system: Elucidating multi-oxidant mechanism [J]. Chemical Engineering Journal, 2018, 341: 137-145. [百度学术]
SUN S F, PANG S Y, JIANG J, et al. The combination of ferrate(Ⅵ) and sulfite as a novel advanced oxidation process for enhanced degradation of organic contaminants [J]. Chemical Engineering Journal, 2018, 333: 11-19. [百度学术]
SUN M Y, HUANG W Y, CHENG H, et al. Degradation of dye in wastewater by homogeneous Fe(Ⅵ)/NaHSO3 system [J]. Chemosphere, 2019, 228: 595-601. [百度学术]
GAO Y, ZHOU Y, PANG S Y, et al. Quantitative evaluation of relative contribution of high-valent iron species and sulfate radical in Fe(Ⅵ) enhanced oxidation processes via sulfur reducing agents activation [J]. Chemical Engineering Journal, 2020, 387: 124077. [百度学术]
SHAO B B, DONG H Y, FENG L Y, et al. Influence of [sulfite]/[Fe(Ⅵ)] molar ratio on the active oxidants generation in Fe(Ⅵ)/sulfite process [J]. Journal of Hazardous Materials, 2020, 384: 121303. [百度学术]
JrSPELLMAN C D, DA’ER S, IKUMA K, et al. Sulfite-activated ferrate for water reuse applications [J]. Water Research, 2022, 216: 118317. [百度学术]
YANG T, WU S S, MAI J M, et al. Activation of ferrate(Ⅵ) by sulfite for effectively degrading iodinated contrast media and synchronously controlling I-DBPs formation [J]. Chemical Engineering Journal, 2022, 442: 136011. [百度学术]
SHAO B B, DONG H Y, SUN B, et al. Role of ferrate(Ⅳ) and ferrate(Ⅴ) in activating ferrate(Ⅵ) by calcium sulfite for enhanced oxidation of organic contaminants [J]. Environmental Science & Technology, 2019, 53(2): 894-902. [百度学术]
SHARMA V K. Oxidation of inorganic compounds by Ferrate(Ⅵ) and Ferrate(Ⅴ): One-electron and two-electron transfer steps [J]. Environmental Science & Technology, 2010, 44(13): 5148-5152. [百度学术]
SHARMA V K, CABELLI D. Reduction of oxyiron(Ⅴ) by sulfite and thiosulfate in aqueous solution [J]. The Journal of Physical Chemistry A, 2009, 113(31): 8901-8906. [百度学术]
FENG M B, JINADATHA C, MCDONALD T J, et al. Accelerated oxidation of organic contaminants by ferrate(Ⅵ): The overlooked role of reducing additives [J]. Environmental Science & Technology, 2018, 52(19): 11319-11327. [百度学术]
ZHU J H, YU F L, MENG J R, et al. Overlooked role of Fe(Ⅳ) and Fe(Ⅴ) in organic contaminant oxidation by Fe(Ⅵ) [J]. Environmental Science & Technology, 2020, 54(15): 9702-9710. [百度学术]
LUO M F, ZHOU H Y, ZHOU P, et al. Insights into the role of in situ and ex-situ hydrogen peroxide for enhanced ferrate(Ⅵ) towards oxidation of organic contaminants [J]. Water Research, 2021, 203: 117548. [百度学术]
LUO C, SADHASIVAN M, KIM J, et al. Revelation of Fe(Ⅴ)/Fe(Ⅳ) involvement in the Fe(Ⅵ)–ABTS system: Kinetic modeling and product analysis [J]. Environmental Science & Technology, 2021, 55(6): 3976-3987. [百度学术]
XIE Z J, SHI Y, ZHANG H, et al. Enhanced removal of sulfamethoxazole by a Fe(Ⅵ)/redox mediator system: Insights into the key role of Fe(Ⅴ) [J]. ACS ES & T Engineering, 2023, 3(11): 1728-1737. [百度学术]
LEE Y, KISSNER R, VON GUNTEN U. Reaction of ferrate(Ⅵ) with ABTS and self-decay of ferrate(Ⅵ): Kinetics and mechanisms [J]. Environmental Science & Technology, 2014, 48(9): 5154-5162. [百度学术]
DONG H Y, QIANG Z M, LIAN J F, et al. Promoted oxidation of diclofenac with ferrate (Fe(Ⅵ)): Role of ABTS as the electron shuttle [J]. Journal of Hazardous Materials, 2017, 336: 65-70. [百度学术]
LI D, PAN C, ZONG Y, et al. Ru(Ⅲ)-periodate for high performance and selective degradation of aqueous organic pollutants: important role of Ru(Ⅴ) and Ru(Ⅳ) [J]. Environmental Science & Technology, 2023, 57(32): 12094-12104. [百度学术]
DU J K, TANG S G, FAHEEM, et al. Insights into periodate oxidation of bisphenol A mediated by manganese [J]. Chemical Engineering Journal, 2019, 369: 1034-1039. [百度学术]
ZONG Y, SHAO Y F, JI W J, et al. Trace Mn(Ⅱ)-catalyzed periodate oxidation of organic contaminants not relying on any transient reactive species: The substrate-dependent dual roles of in situ formed colloidal MnO2 [J]. Chemical Engineering Journal, 2023, 451: 139106. [百度学术]
ZHAO W, CHENG H F, TAO S. Structure-reactivity relationships in the adsorption and degradation of substituted phenylarsonic acids on birnessite (δ-MnO2) [J]. Environmental Science & Technology, 2020, 54(3): 1475-1483. [百度学术]
YU M D, HE X S, Ⅺ B D, et al. Dissolved silicate enhances the oxidation of chlorophenols by permanganate: Important role of silicate-stabilized MnO2 colloids [J]. Environmental Science & Technology, 2020, 54(16): 10279-10288. [百度学术]
YU Y H, DONG H Y, CHEN T S, et al. Unraveling the intrinsic mechanism behind the selective oxidation of sulfonamide antibiotics in the Mn(Ⅱ)/periodate process: The overlooked surface-mediated electron transfer process [J]. Water Research, 2023, 244: 120507. [百度学术]
CHADI N E, MEROUANI S, HAMDAOUI O, et al. H2O2/periodate (IO
KIM Y, LEE H, OH H, et al. Revisiting the oxidizing capacity of the periodate-H2O2 mixture: Identification of the primary oxidants and their formation mechanisms [J]. Environmental Science & Technology, 2022, 56(9): 5763-5774. [百度学术]
CHEN T S, SUN Y K, DONG H Y, et al. Understanding the importance of periodate species in the pH-dependent degradation of organic contaminants in the H2O2/periodate process [J]. Environmental Science & Technology, 2022, 56(14): 10372-10380. [百度学术]
JOHNSON H D, COOPER W J, MEZYK S P, et al. Free radical reactions of monochloramine and hydroxylamine in aqueous solution [J]. Radiation Physics and Chemistry, 2002, 65(4/5): 317-326. [百度学术]
JOHNSON M D, HORNSTEIN B J. The kinetics and mechanism of the ferrate (Ⅵ) oxidation of hydroxylamines [J]. Inorganic Chemistry, 2003, 42(21): 6923-6928. [百度学术]
LEE H, LEE H J, SEO J, et al. Activation of oxygen and hydrogen peroxide by copper (Ⅱ) coupled with hydroxylamine for oxidation of organic contaminants [J]. Environmental Science & Technology, 2016, 50(15): 8231-8238. [百度学术]
ZOU J, MA J, CHEN L W, et al. Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(Ⅲ)/Fe(Ⅱ) cycle with hydroxylamine [J]. Environmental Science & Technology, 2013, 47(20): 11685-11691. [百度学术]
SUN H W, HE F, CHOI W. Production of reactive oxygen species by the reaction of periodate and hydroxylamine for rapid removal of organic pollutants and waterborne bacteria [J]. Environmental Science & Technology, 2020, 54(10): 6427-6437. [百度学术]
GUO X, YANG F, DENG S Y, et al. Activation of periodate by ABTS as an electron shuttle for degradation of aqueous organic pollutants and enhancement effect of phosphate [J]. Chemosphere, 2024, 349: 140793. [百度学术]
YANG S, SHI Y, WANG X H, et al. Selective elimination of sulfonamide antibiotics upon periodate/catechol process: Dominance of quinone intermediates [J]. Water Research, 2023, 242: 120317. [百度学术]
ARNDT S, WEIS D, DONSBACH K, et al. The “green” electrochemical synthesis of periodate [J]. Angewandte Chemie (International Ed in English), 2020, 59(21): 8036-8041. [百度学术]