摘要
铁/锰硫矿物广泛存在于缺氧地下环境中,铁(Fe)、锰(Mn)和硫(S)元素的循环过程控制着地下环境的物质循环和能量转化过程。氧气(O2)扰动下,铁硫矿物可通过双电子路径还原O2,产生活性氧(ROS),但锰硫矿物与O2反应产生ROS的反应过程还不清楚。以自然界中普遍存在的典型锰硫矿物硫化锰(MnS)为研究对象,探究MnS活化O2产生ROS的种类、动力学原理及反应机制。结果表明,MnS可以活化O2产生大量ROS,包括羟基自由基(·OH)、过氧化氢(H2O2)和超氧阴离子自由基(O

锰(Mn)是地壳中丰度仅次于铁和钛的过渡金属元素,其在地壳中的丰度为0.096%,主要存在于淡水、海水、沉积物和各种矿物中。一般地下水中溶解性M
然而,MnS与O2的反应机制与FexSy/O2体系显著不同。众所周知,无论溶解态F
笔者以自然界中普遍存在的典型锰硫矿物MnS为研究对象,探究有氧条件下MnS氧化过程中ROS的种类、产量和影响因素(如MnS质量浓度、pH值及溶解氧DO含量等);利用场发射扫描电子显微镜(FESEM)、X射线衍射(XRD)和X射线光电子能谱分析(XPS)等表征方法,探究MnS反应前后的物相组成差异;以苯酚为模型污染物探究MnS氧化过程中产生的ROS对污染物的氧化去除机制。
主要试剂:MnS颗粒为α-MnS。制备β-MnS进行有氧氧化反应,几乎没有检测到ROS生成,因此,除非特殊说明,所述MnS均指α-MnS。苯甲酸(BA)、对羟基苯甲酸(p-HBA)、苯酚、H2O2、高氯酸(HClO4)和氢氧化钠(NaOH)等,均来自麦克林和阿拉丁试剂,实验用水均为超纯水。
主要仪器:SU8220型场发射扫描电镜(日本Hitach公司)、Escalab 250 Xi型X射线光电子能谱仪(Thermo Fisher公司)、D8-Advance型X射线衍射仪(德国Bruker公司)、Alliance e2695型高效液相色谱(美国Waters公司)、DR6000型紫外可见分光光度计(美国HACH公司)、HQ 30d型哈希(HACH)探头式溶解氧仪(美国HACH公司)、PHS-3E 型pH计(上海雷磁仪器有限公司)、AMM-12型磁力搅拌器(上海楚柏实验室设备有限公司)、PURELAB Chorus型超纯水制备系统(威立雅水处理技术(上海)有限公司)。
MnS活化O2实验在150 mL敞口烧杯中进行(反应温度为(25±1)°C)。将50 mL含20 mmol/L的BA溶液加入到150 mL烧杯中,以捕获·OH,使用2 mol/L的HClO4 或NaOH溶液调节初始pH值,最后加入一定质量MnS启动反应,在设定的时间间隔内从体系中取悬浊液,立即用0.22 μm的针式微孔滤膜过滤,取0.5 mL样品,立即加入0.5 mL甲醇淬灭反应,采用高效液相色谱测定p-HBA浓度,以计算 ·OH的累积产量,·OH转化系数为5.87,即[·OH累积量]=5.87×[p-HBA
MnS厌氧氧化及催化H2O2实验在密闭100 mL厌氧瓶中进行,反应前通入30 min氮气(N2),以除去溶液中的DO,起始反应后密封厌氧瓶,保持缺氧环境。实验用水均为除氧超纯水,其他操作和条件与有氧条件下实验保持一致。所有实验至少进行3次平行实验,同时给出平均值与标准偏差。
采用EPR图谱鉴别MnS/O2体系中产生的ROS,包括硫酸根自由基(SO
p-HBA、苯酚和S8(甲醇萃取)浓度采用高效液相色谱仪(Alliance e2695,Waters)进行分析,测定参数包括使用XBridge C18柱(250 mm×4.6 mm,5 μm)作为固定相,流速为1 mL/min,p-HBA流动相设为50%甲醇和50%乙酸溶液(0.1%),波长为254 nm;苯酚流动相设为70%甲醇和30%乙酸溶液(0.1%),波长270 nm;S8流动相设为95%甲醇和5%乙酸溶液(0.1%),波长255 nm。H2O2浓度采用ABTS法用紫外分光光度计(DR 6000,HACH)在波长415 nm进行测
已有研
通过p-HBA探针反应定量FexSy/O2和MnS/O2体系中产生的·OH,如

(a) DMPO-·OH图谱

(b) DMPO-

(c) 不同铁锰硫化物体系中产生的·OH累积量
图1 MnS/O2 (N2)体系EPR图谱和MnS、FeS、FeS2有氧体系产生的·OH累积量
Fig. 1 EPR spectra in MnS/O2 (N2) system and ·OH accumulation during MnS, FeS, FeS2 oxygenation
众所周知,·OH的氧化还原电位高达2.8 V,是氧化能力最强的活性物
如

图2 MnS质量浓度对·OH累积量的影响
Fig. 2 Effects of MnS initial concentration on cumulative ·OH
溶解的硫化物形态主要是双质子化的H2S和单质子化的H
高浓度MnS溶解会消耗大量质子,导致溶液pH值快速上升,使MnS的溶解速率减慢,ROS产生效率明显降低。如

图3 MnS质量浓度对溶液pH值的影响
Fig. 3 Effects of MnS initial concentration on pH variations

(a) 初始pH值对·OH累积量的影响

(b) 不同初始pH值条件下溶液pH值的变化趋势
图4 初始pH值对·OH累积量及溶液pH值的影响
Fig. 4 Effects of MnS initial pH on cumulative
·OH and pH variation
为厘清DO和·OH产生效率之间的关系,监测了不同搅拌速度下MnS/O2体系中DO浓度的变化趋势。如
当转速从100 r/min增加至200 r/min时,MnS/O2体系中·OH产率显著增加,但奇怪的是,当DO补给速度较快时(转速300~400 r/min),·OH的初始产生率虽然明显增加,但·OH的总累积浓度却降低了,这种现象在高转速400 r/min时更为明显(见

(a) 不同搅拌速度条件下DO浓度的变化趋势

(b) 搅拌速度对·OH累积量的影响
图5 不同搅拌速度对DO浓度及·OH累积量的影响
Fig. 5 Effects of stirring speed on DO concentration and cumulative ·OH
根据Haber-Weiss机理,H2O2是Fenton反应过程中生成·OH必不可少的中间产物。如
有文
综上所述,O2先被MnS提供的电子还原,产生O

(a) 不同体系内H2O2瞬时浓度

(b) MnS/O2体系内H2O2淬灭实验

(c) MnS/O2体系内·OH淬灭实验
图6 H2O2浓度变化趋势及淬灭实验
Fig. 6 Variation trends of H2O2 concentration and quenching experiment in MnS/O2 system
如
由于MnS在水溶液中溶解度较高,因此,MnS颗粒在水溶液中的氧化过程总是伴随着溶解过程。检测MnS/O2体系溶解及氧化过程中各物质的生成量,如

(a) 有/无氧下MnS催化H2O2产·OH的效率比较

(b) 溶解性Mn和S物种的生成量

(c) 不同Mn/S中间产物催化O2/H2O2产·OH量

(d) 不同硫化物对MnO催化O2/H2O2产·OH量影响
图7 MnS/O2体系中H2O2转化为·OH机理分析
Fig. 7 Mechanism analysis of H2O2 conversion to ·OH in MnS/O2 system
Mn的溶解是一个缓慢的过程,在0~7 h内,溶液中共存着较高浓度的溶解性M
如
1) XRD分析。XRD表征显示了MnS有氧氧化前后晶体结构的变化。

图8 MnS的XRD图谱
Fig. 8 XRD spectra of MnS
2) FESEM分析。利用FESEM对反应前后MnS颗粒的形貌进行表征,结果显示MnS颗粒粒径为μmol/L级别。如

(a) 原始MnS

(b) 反应2 h的MnS

(c) 反应5 h 的MnS
图9 MnS扫描电镜图
Fig. 9 FESEM images of MnS
3) XPS分析。利用XPS对MnS的表面化学性质进行详细表征,考察MnS有氧氧化反应前后Mn、S的氧化状态。

(a) XPS总谱图

(b) Mn 2p 图谱

(c) S 2p 图谱
图10 MnS的XPS图谱
Fig. 10 XPS spectra of MnS
高分辨率的S 2p XPS谱表明,S物种也发生了显著的氧化反应。
为探究有氧条件下MnS介导产生ROS对有机污染物的降解效果,在MnS/O2体系中加入5 mg/L苯酚,以分析其浓度变化(反应条件:1 g/L的MnS、pH值为3、搅拌速度为200 r/min)。如

(a) MnS/O2体系内苯酚的有氧降解及矿化率

(b) 不同淬灭剂对MnS/O2体系内苯酚降解率的影响
图11 不同因素下苯酚的降解情况及矿化率
Fig. 11 Degradation and mineralization rate of phenol under different factors in MnS/O2 system
由于O2并不能直接氧化苯酚,所以苯酚很可能被MnS/O2体系中产生的ROS氧化降解。用淬灭实验验证主导苯酚降解的ROS物种,如
MnS常处于缺氧的地下含水层沉积物中,然而当一些自然或者人为因素导致O2扰动时,MnS可以提供1个电子还原O2,产生O

图12 MnS/O2体系·OH生成及苯酚降解机理
Fig. 12 Formation mechanism of ROS in MnS/O2 system
铁、锰硫化物广泛赋存于地球表层环境中,目前对FexSy活化O2产生ROS的作用机制的认识已较为清楚。虽然Mn和Fe同属过渡金属元素,但Mn(Ⅱ)和Fe(Ⅱ)的化学性质差异显著,无论是结构态Mn(Ⅱ)还是溶解态的M
围绕MnS介导的有氧界面ROS的产生过程开展研究,分析MnS/O2体系中ROS的种类、生成动力学及影响因素,探究MnS介导的有氧界面电子传递路径和ROS产生机制。得到以下主要结论:
1)MnS可以活化O2产生大量ROS,包括·OH、H2O2和O
2)溶解性M
3)以苯酚为目标污染物,MnS/O2体系在3 h内对5 mg/L苯酚的降解率高达97.4%,矿化率为44%, ·OH是主要的活性物种,表明MnS活化O2具有较好的环境污染修复应用前景。
参考文献
刘进超, 王欧美, 李佳佳, 等. 生物地球化学锰循环中的微生物胞外电子传递机制[J]. 微生物学报, 2018, 58(4): 546-559. [百度学术]
LIU J C, WANG O M, LI J J, et al. Mechanisms of extracellular electron transfer in the biogeochemical manganese cycle [J]. Acta Microbiologica Sinica, 2018, 58(4): 546-559. (in Chinese) [百度学术]
孙波. NaHSO3活化KMnO4快速氧化水中微量有机污染物的效能与机理[D]. 哈尔滨: 哈尔滨工业大学, 2017. [百度学术]
SUN B. Kinetics and mechanisms on the fast degradation of micro-organic contaminants by bisulfite activated permanganate [D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese) [百度学术]
GU Y W, WANG B B, HE F, et al. Mechanochemically sulfidated microscale zero valent iron: Pathways, kinetics, mechanism, and efficiency of trichloroethylene dechlorination [J]. Environmental Science & Technology, 2017, 51(21): 12653-12662. [百度学术]
SUESS E. Mineral phases formed in anoxic sediments by microbial decomposition of organic matter [J]. Geochimica Et Cosmochimica Acta, 1979, 43(3): 339-352. [百度学术]
LEPLAND A, STEVENS R L. Manganese authigenesis in the Landsort Deep, Baltic Sea [J]. Marine Geology, 1998, 151(1-4): 1-25. [百度学术]
BÖTTCHER M E, HUCKRIEDE H. First occurrence and stable isotope composition of authigenic γ-MnS in the central Gotland Deep (Baltic Sea) [J]. Marine Geology, 1997, 137(3/4): 201-205. [百度学术]
HESTER E T, GOOSEFF M N. Moving beyond the banks: Hyporheic restoration is fundamental to restoring ecological services and functions of streams [J]. Environmental Science & Technology, 2010, 44(5): 1521-1525. [百度学术]
BOMAN A, ÅSTRÖM M, FRÖJDÖ S. Sulfur dynamics in boreal acid sulfate soils rich in metastable iron sulfide—The role of artificial drainage [J]. Chemical Geology, 2008, 255(1/2): 68-77. [百度学术]
成东. 硫化亚铁有氧氧化产羟自由基降解有机污染物机制[D]. 武汉: 中国地质大学, 2020. [百度学术]
CHENG D. Mechanism of hydroxyl radical production from FeS oxygenation for organic contaminant degradation [D]. Wuhan: China University of Geosciences, 2020. (in Chinese) [百度学术]
LIAO X P, CAO J R, LEI M, et al. Impact of manganese sulfide (MnS) oxygenation-induced oxidization on aqueous organic contaminants: Insight into the role of the hydroxyl radical (HO·) [J]. The Science of the Total Environment, 2022, 840: 156702. [百度学术]
饶丹丹, 孙波, 乔俊莲, 等. 三价锰的性质、产生及环境意义[J]. 化学进展, 2017, 29(9): 1142-1153. [百度学术]
RAO D D, SUN B, QIAO J L, et al. The properties, generation and environmental significance of Mn(Ⅲ) [J]. Progress in Chemistry, 2017, 29(9): 1142-1153. (in Chinese) [百度学术]
MORGAN J J. Kinetics of reaction between O2 and Mn(Ⅱ) species in aqueous solutions [J]. Geochimica et Cosmochimica Acta, 2005, 69(1): 35-48. [百度学术]
CHENG D, NEUMANN A, YUAN S H, et al. Oxidative degradation of organic contaminants by FeS in the presence of O2 [J]. Environmental Science & Technology, 2020, 54(7): 4091-4101. [百度学术]
ZHANG P, YUAN S H, LIAO P. Mechanisms of hydroxyl radical production from abiotic oxidation of pyrite under acidic conditions [J]. Geochimica et Cosmochimica Acta, 2016, 172: 444-457. [百度学术]
CAI H H, LIU X, ZOU J, et al. Multi-wavelength spectrophotometric determination of hydrogen peroxide in water with peroxidase-catalyzed oxidation of ABTS [J]. Chemosphere, 2018, 193: 833-839. [百度学术]
CHENG D, YUAN S H, LIAO P, et al. Oxidizing Impact Induced by Mackinawite (FeS) Nanoparticles at Oxic Conditions due to Production of Hydroxyl Radicals [J]. Environmental Science & Technology, 2016, 50(21): 11646-11653. [百度学术]
WARDMAN P. Reduction potentials of one-electron couples involving free radicals in aqueous solution [J]. Journal of Physical and Chemical Reference Data, 1989, 18(4): 1637-1755. [百度学术]
HE S Y, HU W R, LIU Y L, et al. Mechanism of efficient remediation of U(VI) using biogenic CMC-FeS complex produced by sulfate-reducing bacteria [J]. Journal of Hazardous Materials, 2021, 420: 126645. [百度学术]
BUXTON G V, GREENSTOCK C L, PHILLIPS HELMAN W, et al. Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·
RITTMANN B E, MCCARTY P L. Environmental biotechnology: Principles and applications [M]. McGraw-Hill, New York, NY, USA. 2001: 754. [百度学术]
ZHAO J W, SU A, TIAN P, et al. Arsenic (Ⅲ) removal by mechanochemically sulfidated microscale zero valent iron under anoxic and oxic conditions [J]. Water Research, 2021, 198: 117132. [百度学术]
PI L, CAI J H, XIONG L L, et al. Generation of H2O2 by on-site activation of molecular dioxygen for environmental remediation applications: A review [J]. Chemical Engineering Journal, 2020, 389: 123420. [百度学术]
FENG C Y, TANG L, DENG Y C, et al. Synthesis of leaf-vein-like g-C3N4 with tunable band structures and charge transfer properties for selective photocatalytic H2O2 evolution [J]. Advanced Functional Materials, 2020, 30(39): 2001922. [百度学术]
ZHANG L Y, GAO Y, QU J, et al. An atom-economy route for the fabrication of α-MnS@C microball with ultrahigh supercapacitance: The significance of in situ vulcanization [J]. Journal of Colloid and Interface Science, 2021, 594: 186-194. [百度学术]
CHEN H W, WANG C H, DONG W L, et al. Monodispersed sulfur nanoparticles for lithium-sulfur batteries with theoretical performance [J]. Nano Letters, 2015, 15(1): 798-802. [百度学术]
FANG G G, LI J L, ZHANG C, et al. Periodate activated by manganese oxide/biochar composites for antibiotic degradation in aqueous system: Combined effects of active manganese species and biochar [J]. Environmental Pollution, 2022, 300: 118939. [百度学术]
LIU B S, NIU W K, HU X J, et al. Enhanced oxidative activation of chlorine dioxide by divalent manganese ion for efficient removal of PAHs in industrial soil [J]. Chemical Engineering Journal, 2022, 434: 134631. [百度学术]
HAN X L, ZHANG W, LI S, et al. Mn-MOF derived manganese sulfide as peroxymonosulfate activator for levofloxacin degradation: An electron-transfer dominated and radical/nonradical coupling process [J]. Journal of Environmental Sciences (China), 2023, 130: 197-211. [百度学术]
WU Z H, SHEN J, LI W L. Electron self-sufficient core-shell BiOCl@Fe-BiOCl nanosheets boosting Fe(Ⅲ)/Fe(Ⅱ) recycleing and synergetic photocatalysis-Fenton for enhanced degradation of phenol [J]. Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications, 2023, 330: 122642. [百度学术]
张鹏, 吴宏海, 魏燕富, 等. Fe/S耦合催化剂的合成及其芬顿催化性能[J]. 华南师范大学学报(自然科学版), 2021, 53(1): 50-55. [百度学术]
ZHANG P, WU H H, WEI Y F, et al. The synthesis and Fenton catalytic performance of the Fe/S coupling catalyst [J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(1): 50-55. (in Chinese) [百度学术]
WEI X P, WU H H, HE G P, et al. Efficient degradation of phenol using iron-montmorillonite as a Fenton catalyst: Importance of visible light irradiation and intermediates [J]. Journal of Hazardous Materials, 2017, 321: 408-416. [百度学术]