摘要
作为处理染料废水的新途径,臭氧催化氧化工艺结合微纳米气泡曝气技术解决了染料废水中有机污染物难降解和色度难去除问题,具有较好的应用前景。以模拟阳离子染料废水为研究对象,采用硝酸锰/活性炭(Mn/GAC)作为催化剂,使用臭氧催化氧化工艺结合微纳米气泡曝气技术处理阳离子染料废水。以色度去除率作为考察指标,在确定阳离子染料废水的初始浓度和臭氧浓度的基础上,对催化剂使用量、废水的初始pH值和废水的初始温度3个因素进行正交实验,考查其对阳离子金黄X-GL染料废水处理效果的影响。结果表明:采用微纳米气泡臭氧催化氧化去除阳离子金黄X-GL染料废水色度能达到较好的效果。在催化剂的投加量为3.5 g/L、初始pH值为9.4、初始温度为23.6 ℃的条件下进行验证实验,结果表明,最佳色度去除率为95.6%,说明该工艺处理染料废水能达到预期效果。

作为最早出现的合成材料之一,阳离子染料具有色泽鲜艳、水溶性好等特点,专用于腈纶印
与其他方法相比,高级氧化法中的非均相臭氧催化氧化处理阳离子染料废水具有反应速度快、去除效率高、不产生污泥、无二次污染、工艺简单、占地面积小等优点,因此成了研究热
笔者利用臭氧催化氧化结合微纳米曝气技术处理模拟阳离子金黄X-GL染料废水,通过正交实验研究影响废水色度去除率的主要因素,以期完善对微纳米臭氧催化氧化X-GL染料废水的研究。
阳离子金黄X-GL:工业纯,杭州前进科技有限公司;碘化钾:分析纯,沈阳市东兴试剂厂;30%过氧化氢:分析纯,天津市天新精细化工研发中心;高锰酸钾:分析纯,沈阳市东兴试剂厂;硝酸锰:分析纯,沈阳市盛隆富实验设备有限公司;活性炭:分析纯,6~8目,津东天正精细化学试剂厂。
PTX-FA120电子天平:上海方瑞有限公司;GZX-9246MEB电热鼓风干燥箱:上海博讯实业医疗设备厂有限公司;UV-5500紫外可见分光光度计:上海元析仪器有限公司;SX711型pH计:上海三信仪表厂;XDR-10K移动式臭氧发生器:石家庄市欧能通用科技有限公司;20QY-1气液混合泵:南方泵业;4 L溶气罐:宜兴星火环保科技有限公司;S-4800扫描电子显微镜:日本日立公司;Autosorb-IQ比表面积及孔隙度分析仪:美国康塔仪器公司;XRD-7000X射线衍射:SHIMADZU CORPORATION;ICP-MS分析仪:珀金埃尔默仪器有限公司。
废水脱色反应装置为密闭循环系统,微纳米气泡曝气的气体来源为臭氧发生器产生的臭氧,如

图1 实验装置图
Fig. 1 Experimental setup
每组实验开始前用蒸馏水将反应装置冲刷干净,向反应容器中加入浓度为100 mg/L的阳离子金黄X-GL染料废水20 L,浓度与阳离子染料废水的3级预处理或深度处理阶段的污染物浓度相
用网布包裹一定量的硝酸锰/活性炭(Mn/GAC)改性催化剂,固定在反应容器中部,产生的微纳米气泡从下到上与催化剂接触,进行臭氧催化氧化实验。通过改变催化剂投加量、pH值和反应温度,微纳米气泡连续曝气120 min,进行臭氧催化氧化正交实验。所取水样静置15 min后测量脱色率,以减小气泡对水中污染物含量测定的影响。
测试指标主要为色度去除率,用脱色率表示。溶液色度采用分光光度法测定。将待测水样置入比色皿中,在波长440 nm条件下,分别选取不同染料浓度废水,对其进行吸光度测定,绘制染料浓度的标准曲线,见

图2 染料浓度的标准曲线
Fig. 2 Standard curve of dye concentration
采用浸渍法制备Mn/GAC催化剂。载体的预处理:取6~8目的颗粒活性炭置于烧杯中,用纯水洗涤2~3次,除去灰尘等杂质,放在烘干箱中进行干燥。Mn/GAC催化剂制备:称取一定量已预处理的GAC载体浸入硝酸锰溶液中,在常温下放置6 h,每隔0.5 h均匀搅拌;随后,在搅拌情况下加入高锰酸钾溶液,生成二氧化锰沉淀,搅拌30 min后放置6 h;将溶液过滤掉,用蒸馏水清洗2次,放入120 ℃烘箱中进行干燥;取出干燥的Mn/GAC复合物,放于马弗炉中500 ℃煅烧3 h,完成制备。
采用日本HITACHI公司生产的S-4800型冷场发射扫描电子显微镜对催化剂进行微观形貌分析检测;采用美国康塔公司生产的Autosorb-IQ物理吸附仪测定催化剂微孔孔容积及微孔孔径分布;采用7000型X射线衍射仪进行XRD分析。
对催化剂改性前后进行扫描电镜分析,如

(a) 未改性活性炭SEM图

(b) 硝酸锰改性活性炭SEM图
图3 活性炭改性前后的SEM照片
Fig. 3 SEM results of activated carbon before and after modification
对未改性的活性炭和硝酸锰改性后的活性炭进行BET测试,结果如
样品 | 比表面积/( | 孔容/(m | 平均孔径/nm |
---|---|---|---|
未改性活性炭 | 35.122 | 19 | 2.508 |
硝酸锰改性活性炭 | 20.636 | 13 | 2.356 |
对未改性活性炭和硝酸锰改性活性炭进行XRD分析。活性炭改性前后的XRD谱见

图4 活性炭改性前后的XRD谱
Fig. 4 XRD patterns of activated carbon before and after modification
分别调节臭氧浓度为4.37、7.49、10.47 mg/L,各臭氧投加量的色度去除率分别为54.4%、63.4%及69.7%,如

图5 不同臭氧投加量的色度去除率
Fig. 5 Chroma removal rate of different ozone dosage
4种反应体系对染料废水中色度去除率的影响如

图6 不同催化剂的色度去除率
Fig. 6 Chroma removal rates of different catalyst
催化剂的投加量影响臭氧催化反应的效果与投入成本,初始pH值对臭氧微气泡分解速率具有显著影响,初始温度变化是微纳米气泡是否活跃的关
水平 | 因素A: 催化剂的投加量/(g/L) | 因素B: 初始pH值 | 因素C: 初始温度/℃ |
---|---|---|---|
1 | 3.0 | 8.5 | 23.6 |
2 | 3.5 | 9.4 | 25.2 |
3 | 4.0 | 10.1 | 27.7 |
对正交实验进行极差分析,并观察各组实验的色度去除率。由
实验号 | 因素A:催化剂的投加量/(g/L) | 因素B: 初始pH值 | 因素C: 初始温度/℃ | 色度去除率/% |
---|---|---|---|---|
1 | 3.0(水平1) | 8.5(水平1) | 23.6(水平1) | 84.5 |
2 | 3.0(水平1) | 9.4(水平2) | 25.2(水平2) | 86.2 |
3 | 3.0(水平1) | 10.1(水平3) | 27.7(水平3) | 82.3 |
4 | 3.5(水平2) | 8.5(水平1) | 25.2(水平2) | 87.5 |
5 | 3.5(水平2) | 9.4(水平2) | 27.7(水平3) | 91.2 |
6 | 3.5(水平2) | 10.1(水平3) | 23.6(水平1) | 88.3 |
7 | 4.0(水平3) | 8.5(水平1) | 27.7(水平3) | 83.7 |
8 | 4.0(水平3) | 9.4(水平2) | 23.6(水平1) | 92.4 |
9 | 4.0(水平3) | 10.1(水平3) | 25.2(水平2) | 87.2 |
T1 | 253.0 | 255.7 | 265.2 | |
T2 | 267.0 | 269.8 | 260.9 | |
T3 | 263.3 | 257.8 | 257.2 | |
K1 | 84.4 | 85.2 | 88.4 | |
K2 | 89.0 | 89.9 | 86.9 | |
K3 | 87.7 | 85.9 | 85.7 | |
R | 4.6 | 4.7 | 2.6 | |
因素主次顺序 | 初始pH值>催化剂投加量>初始温度 | |||
最佳水平 | A2 | B2 | C1 | |
最佳组合 | 3.5 | 9.4 | 23.6 |

图7 各实验组的色度去除率
Fig. 7 Chroma removal rate of each experimental group
通过正交实验的直观分析,正交实验表中T1、T2、T3分别表示每个因素同一水平结果之和,K1、K2、K3表示各因素在每一水平下的平均色度去除率,根据效应曲线图可以直观看出,最优方案为A2B2C1,也就是用各因素平均色度去除率最高的水平组合方案。由
1)催化剂的投加量。阳离子金黄X-GL染料废水由于具有芳香酮结构的显色基团而色度偏高,·OH对显色基团有很好的破坏效果。MnO2能有效促进体系的氧化反应及臭氧的间接反

图8 正交实验效应曲线图
Fig. 8 Orthogonal experimental effect
2)pH值。在臭氧催化反应中,pH值被认为是影响反应进程的重要因素之一,当处于酸性环境时,臭氧分解主要遵循臭氧直接氧化机理,而处于碱性环境时,臭氧分解遵循的是羟基自由基机

图9 最佳组合下阳离子金黄X-GL染料废水的色度去除率
Fig. 9 Chroma removal rate of cationic golden yellow X-GL dye wastewater under optimal combination
3)温度。理论上阳离子金黄X-GL染料废水初始温度的适当提高能促进催化剂降低反应活化
根据正交实验得出催化剂的投加量为3.5 g/L、初始pH值为9.4、初始温度为23.6 ℃时为最佳水平组合。在最佳水平组合条件下,以Mn/GAC为催化剂,在臭氧进气量2 L/min、臭氧进口浓度10.47 mg/L的基本条件下处理浓度为100 mg/L的20 L模拟染料废水,连续微气泡曝气120 min进行臭氧催化氧化实验,如
在最优条件下,连续曝气120 min,并重复5次使用催化剂,以考察Mn/GAC催化剂的稳定性。由

图10 锰的浸出率及色度去除率
Fig. 10 Manganese leaching rate and chroma removal rate
通过对Mn/GAC催化剂的投加量、废水的初始pH值和初始温度3种因素进行正交实验,经过直观分析可知:初始pH值对阳离子金黄X-GL染料废水的色度去除效果影响最大,其次是催化剂投加量,影响程度最弱的为初始温度。适当的Mn/GAC催化剂能催化臭氧分解产生·OH,使染料中的芳香酮显色基团断裂;染料废水初始pH值呈碱性时,有利于臭氧发生氧化反应,产生·OH,提升Mn/GAC催化剂的吸附效果,提高微纳米气泡传质速率;适当的温度能提高臭氧的分解速率,促进催化剂吸附臭氧和有机物。3种因素均对色度去除率有一定影响。
阳离子金黄X-GL染料废水的色度去除效果最佳组合为:催化剂的投加量为3.5 g/L、初始pH值为9.4、初始温度为23.6 ℃。在最佳组合条件下进行验证实验,实验结果表明,阳离子黄金染料废水色度去除率为95.6%,优于各组实验。
重点考察了催化剂使用量、废水的初始pH值和初始温度3种因素对金黄X-GL废水臭氧催化氧化处理效果的影响,从实际应用角度出发,后续需进一步考察无机盐含量等因素对脱色的影响以及Mn/GAC催化剂对实际染料废水的处理效果,为实际生产提供可行性支持。
参考文献
刘江红, 苏会敏, 魏晓航, 等. 阳离子染料废水处理技术研究进展[J]. 化工科技, 2021, 29(4): 60-64. [百度学术]
LIU J H, SU H M, WEI X H, et al. Research progress of cationic dye wastewater treatment technology [J]. Science & Technology in Chemical Industry, 2021, 29(4): 60-64. (in Chinese) [百度学术]
汤登科, 王昕怡, 章耀鹏, 等. Ce-Fe-AC复合材料的制备及降解阳离子染料的性能[J]. 印染, 2021, 47(6): 59-63. [百度学术]
TANG D K, WANG X Y, ZHANG Y P, et al. Preparation of Ce-Fe-AC composite material and its degradation of cationic dye [J]. China Dyeing & Finishing, 2021, 47(6): 59-63. (in Chinese) [百度学术]
冯云姝, 李萍, 崔爽, 等. 滑石粉处理阳离子染料废水的试验研究[J]. 工业用水与废水, 2011, 42(1): 25-27. [百度学术]
FENG Y S, LI P, CUI S, et al. Treatment of cationic dye wastewater by talcum powder [J]. Industrial Water & Wastewater, 2011, 42(1): 25-27. (in Chinese) [百度学术]
曹力, 李德祥, 邓亚宏, 等. 基于响应面优化的常压等离子体技术处理模拟染料废水[J]. 土木与环境工程学报(中英文), 2023, 45(2): 229-238. [百度学术]
CAO L, LI D X, DENG Y H, et al. Response surface optimization of high-efficiency treatment of dye wastewater with non-temperature plasma [J]. Journal of Civil and Environmental Engineering, 2023, 45(2): 229-238. (in Chinese) [百度学术]
刘梦, 戚秀芝, 张科亭, 等. 非均相催化臭氧氧化法深度处理染料废水[J]. 环境污染与防治, 2018, 40(5): 572-576, 615. [百度学术]
LIU M, QI X Z, ZHANG K T, et al. Advanced treatment of dye wastewater by heterogeneous catalytic ozonation oxidation [J]. Environmental Pollution & Control, 2018, 40(5): 572-576, 615. (in Chinese) [百度学术]
李振邦, 张欢, 王全勇, 等. 多元负载型催化剂的制备及臭氧催化氧化性能[J]. 工业水处理, 2022, 42(1): 148-153. [百度学术]
LI Z B, ZHANG H, WANG Q Y, et al. Preparation and ozonation performance of multicomponent supported catalysts [J]. Industrial Water Treatment, 2022, 42(1): 148-153. (in Chinese) [百度学术]
汪星志. 臭氧非均相催化氧化工艺深度处理印染废水研究[D]. 广州: 华南理工大学, 2016. [百度学术]
WANG X Z. Study on advanced treatment of printing and dyeing wastewater by ozone heterogeneous catalytic oxidation process [D]. Guangzhou: South China University of Technology, 2016. (in Chinese) [百度学术]
FARIA P C C, ÓRFÃO J J M, PEREIRA M F R. Ozone decomposition in water catalyzed by activated carbon: Influence of chemical and textural properties [J]. Industrial & Engineering Chemistry Research, 2006, 45(8): 2715-2721. [百度学术]
SANGJAN S, SRATONGIN M, KAWPAKPOR A, et al. Activated carbon as heterogeneous catalyst of catalytic ozonation activity for improvement RB 49 dye degradation [J]. Materials Science Forum, 2016, 860: 105-110. [百度学术]
宋丹, 刘杰, 杨忆新, 等. 锰基活性炭催化臭氧氧化处理印染废水研究[J]. 工业用水与废水, 2018, 49(5): 16-19. [百度学术]
SONG D, LIU J, YANG Y X, et al. Treatment of printing and dyeing wastewater by catalytic ozonation with manganese-based activated carbon [J]. Industrial Water & Wastewater, 2018, 49(5): 16-19. (in Chinese) [百度学术]
南元泵业. NQY自吸式气液混合泵[EB/OL]. http://www.zjnyby.com/product/557.html, 2022-8-16. [百度学术]
Nanyuan Pump Industry. NQY self-priming gas-liquid mixing pump [EB/OL]. http://www.zjnyby.com/product/557.html, 2022-8-16. (in Chinese) [百度学术]
王苏. 电催化氧化法处理阳离子染料废水试验研究[D]. 广州: 广东工业大学, 2012. [百度学术]
WANG S. Experimental study on treatment of cationic dye wastewater by electrocatalytic oxidation [D]. Guangzhou: Guangdong University of Technology, 2012. (in Chinese) [百度学术]
彭爱国, 贺周初, 肖伟, 等. 化学二氧化锰研究进展[J]. 无机盐工业, 2011, 43(3): 8-10, 30. [百度学术]
PENG A G, HE Z C, XIAO W, et al. Research progress of chemical manganese dioxide [J]. Inorganic Chemicals Industry, 2011, 43(3): 8-10, 30. (in Chinese) [百度学术]
LEE C G, JAVED H, ZHANG D N, et al. Porous electrospun fibers embedding TiO2 for adsorption and photocatalytic degradation of water pollutants [J]. Environmental Science & Technology, 2018, 52(7): 4285-4293. [百度学术]
LI P C, HU C C, LEE T C, et al. Synthesis and characterization of carbon black/manganese oxide air cathodes for zinc-air batteries [J]. Journal of Power Sources, 2014, 269: 88-97. [百度学术]
姜秀榕, 童长青, 张锐明. CuPc/ZnO纳米复合材料的制备及其可见光光催化活性[J]. 湘潭大学自然科学学报, 2018, 40(3): 33-38. [百度学术]
JIANG X R, TONG C Q, ZHANG R M. Synthesis of CuPc/ZnO nano composite materials and their photocatalytic activity under visible light [J]. Natural Science Journal of Xiangtan University, 2018, 40(3): 33-38. (in Chinese) [百度学术]
周姝岑, 芦婉蒙, 李攀. 微纳米气泡臭氧氧化处理印染废水产生的RO浓水[J]. 中国给水排水, 2022, 38(9): 88-93. [百度学术]
ZHOU S C, LU W M, LI P. Micro-nanobubble ozone oxidation for the treatment of RO concentrated water from dyeing wastewater [J]. China Water & Wastewater, 2022, 38(9): 88-93. (in Chinese) [百度学术]
TAKAHASHI M, ISHIKAWA H, ASANO T, et al. Effect of microbubbles on ozonized water for photoresist removal [J]. The Journal of Physical Chemistry C, 2012, 116(23): 12578-12583. [百度学术]
刘冰, 古励, 余国忠, 等. 臭氧/活性炭协同作用去除二级出水中DON [J]. 中国环境科学, 2014, 34(7): 1740-1748. [百度学术]
LIU B, GU L, YU G Z, et al. Removal of dissolved organic nitrogen in the secondary effluent by integrated ozone/activated carbon [J]. China Environmental Science, 2014, 34(7): 1740-1748. (in Chinese) [百度学术]
LI L S, ZHU W P, ZHANG P Y, et al. AC/O3-BAC processes for removing refractory and hazardous pollutants in raw water [J]. Journal of Hazardous Materials, 2006, 135(1/2/3): 129-133. [百度学术]
ROSHANI B, MCMASTER I, REZAEI E, et al. Catalytic ozonation of benzotriazole over alumina supported transition metal oxide catalysts in water [J]. Separation and Purification Technology, 2014, 135: 158-164. [百度学术]
徐圣凯, 毕华奇, 苏本生, 等. 多相臭氧催化氧化反应机理研究进展[J]. 环境工程, 2019, 37(Sup1): 123-127. [百度学术]
XU S K, BI H Q SU B S, et al. Progress in mechanism of heterogeneous ozone catalytic oxidation[J]. Environmental Engineering, 2019, 37(Sup1): 123-127.(in Chinese) [百度学术]
刘莹, 何宏平, 吴德礼, 等. 非均相催化臭氧氧化反应机制[J]. 化学进展, 2016, 28(7): 1112-1120. [百度学术]
LIU Y, HE H P, WU D L, et al. Heterogeneous catalytic ozonation reaction mechanism [J]. Progress in Chemistry, 2016, 28(7): 1112-1120. (in Chinese) [百度学术]
王智勇. Mn-Ce@AC催化剂的制备及臭氧催化氧化研究[D]. 北京: 北京化工大学, 2021. [百度学术]
WANG Z Y. Preparation of Mn-Ce@AC catalyst and study on ozone catalytic oxidation [D].Beijing: Beijing University of Chemical Technology, 2021. (in Chinese) [百度学术]
张静, 杜亚威, 茹星瑶, 等. pH对微气泡臭氧氧化处理染料废水影响[J]. 环境工程学报, 2016, 10(2): 742-748. [百度学术]
ZHANG J, DU Y W, RU X Y, et al. Effect of pH on microbubble ozonation treatment of dyeing wastewater [J]. Chinese Journal of Environmental Engineering, 2016, 10(2): 742-748. (in Chinese) [百度学术]
程雯, 全学军, 罗丹, 等. 微泡强化臭氧传质及其对产生羟基自由基的影响[J]. 化学反应工程与工艺, 2017, 33(5): 458-465. [百度学术]
CHENG W, QUAN X J, LUO D, et al. Intensification of ozone mass transfer by microbubbles and its effect on hydroxyl radical production [J]. Chemical Reaction Engineering and Technology, 2017, 33(5): 458-465. (in Chinese) [百度学术]
刘文卿. 实验设计[M]. 北京: 清华大学出版社, 2005: 64-68. [百度学术]
LIU W Q. Design of experiments [M]. Beijing: Tsinghua University Press, 2005: 64-68. (in Chinese) [百度学术]
卢嘉心, 陈硕. 锰基催化剂催化臭氧氧化有机污染物研究[J]. 大连理工大学学报, 2021, 61(6): 576-585. [百度学术]
LU J X, CHEN S. Catalytic ozonation study of organic pollutants by manganese-based catalysts [J]. Journal of Dalian University of Technology, 2021, 61(6): 576-585. (in Chinese) [百度学术]
彭娟, 杨永哲, 杨宏勃, 等. Fe-Mn-Ce/GAC催化剂制备及其在生物制药废水深度处理中的应用[J]. 环境工程, 2019, 37(12): 113-119. [百度学术]
PENG J, YANG Y Z, YANG H B, et al. Preparation of Fe-Mn-Ce/GAC catalyst and its application in advanced treatment of biopharmaceutical wastewater [J]. Environmental Engineering, 2019, 37(12): 113-119. (in Chinese) [百度学术]
VALDÉS H, TARDÓN R F, ZAROR C A. Methylene blue removal from contaminated waters using heterogeneous catalytic ozonation promoted by natural zeolite: Mechanism and kinetic approach [J]. Environmental Technology, 2012, 33(16): 1895-1903. [百度学术]
奚影影. 基于锰改性活性炭吸附孔雀石绿效能及机理研究[D]. 济南: 山东建筑大学, 2022. [百度学术]
XI Y Y. Study on adsorption efficiency and mechanism of malachite green based on manganese modified activated carbon [D]. Jinan: Shandong Jianzhu University, 2022. (in Chinese) [百度学术]
初永宝, 陈德林, 刘生, 等. 分体式流化床催化臭氧-絮凝工艺深度处理焦化废水生化尾水[J]. 北京大学学报(自然科学版), 2022, 58(1): 177-185. [百度学术]
CHU Y B, CHEN D L, LIU S, et al. Split fluidized bed catalytic ozone-flocculation process for advanced treatment of biochemical tail water from coking wastewater [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58(1): 177-185. (in Chinese) [百度学术]
马艳, 张鑫, 韩小蒙, 等. 臭氧微纳米气泡技术在水处理中的应用进展[J]. 净水技术, 2019, 38(8): 64-67. [百度学术]
MA Y, ZHANG X, HAN X M, et al. Application of micro-nano ozone bubble technology in water treatment: A review [J]. Water Purification Technology, 2019, 38(8): 64-67. (in Chinese) [百度学术]
YU Y K, ZHANG J L, CHEN C W, et al. Effects of calcination temperature on physicochemical property and activity of CuSO4/TiO2 ammonia-selective catalytic reduction catalysts [J]. Journal of Environmental Sciences, 2020, 91: 237-245. [百度学术]
QI F, CHEN Z L, XU B B, et al. Influence of surface texture and acid-base properties on ozone decomposition catalyzed by aluminum (hydroxyl) oxides [J]. Applied Catalysis B: Environmental, 2008, 84(3/4): 684-690. [百度学术]
PSALTOU S, KAPRARA E, TRIANTAFYLLIDIS K, et al. Heterogeneous catalytic ozonation: The significant contribution of PZC value and wettability of the catalysts [J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106173. [百度学术]
TAKAHASHI M. ζ potential of microbubbles in aqueous solutions: Electrical properties of the gas-water interface [J]. The Journal of Physical Chemistry B, 2005, 109(46): 21858-21864. [百度学术]
杨建宇, 张瑞玲, 陈林林, 等. 微纳米气泡复合高级氧化技术降解污染物研究进展[J]. 水处理技术, 2022, 48(3): 25-29. [百度学术]
YANG J Y, ZHANG R L, CHEN L L, et al. Research progress on pollutant degradation by micro-nano bubbles composite advanced oxidation technology [J]. Technology of Water Treatment, 2022, 48(3): 25-29. (in Chinese) [百度学术]
代朝猛, 张峻博, 段艳平, 等. 微纳米气泡特性及在环境水体修复中的应用[J]. 同济大学学报(自然科学版), 2022, 50(3): 431-438. [百度学术]
DAI C M, ZHANG J B, DUAN Y P, et al. Characteristics of micro-nano bubbles and their application in environmental water remediation [J]. Journal of Tongji University (Natural Science), 2022, 50(3): 431-438. (in Chinese) [百度学术]
钱泽朋. 微气泡-臭氧化-催化剂体系协同处理酸性大红3R废水特性[D]. 石家庄: 河北科技大学, 2020. [百度学术]
QIAN Z P. Characteristics of synergistic treatment of acid red 3R wastewater by microbubbles-ozonation-catalyst system [D]. Shijiazhuang: Hebei University of Science and Technology, 2020. (in Chinese) [百度学术]
亓丽丽. 非均相臭氧催化氧化对氯苯酚机理研究及其工艺应用[D]. 哈尔滨: 哈尔滨工业大学, 2013. [百度学术]
QI L L. Study on mechanism of heterogeneous ozone catalytic oxidation of p-chlorophenol and its technological application [D]. Harbin: Harbin Institute of Technology, 2013. (in Chinese) [百度学术]
GUZMAN-PEREZ C A, SOLTAN J, ROBERTSON J. Kinetics of catalytic ozonation of atrazine in the presence of activated carbon [J]. Separation and Purification Technology, 2011, 79(1): 8-14. [百度学术]
BELTRÁN F J, RIVAS F J, MONTERO-DE-ESPINOSA R. Catalytic ozonation of oxalic acid in an aqueous TiO2 slurry reactor [J]. Applied Catalysis B: Environmental, 2002, 39(3): 221-231. [百度学术]
ZHAO L, MA J, SUN Z Z, et al. Catalytic ozonation for the degradation of nitrobenzene in aqueous solution by ceramic honeycomb-supported manganese [J]. Applied Catalysis B: Environmental, 2008, 83(3/4): 256-264. [百度学术]
NÖTHE T, FAHLENKAMP H, VON SONNTAG C. Ozonation of wastewater: Rate of ozone consumption and hydroxyl radical yield [J]. Environmental Science & Technology, 2009, 43(15): 5990-5995. [百度学术]