网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

土体热力学性质及本构关系研究综述  PDF

  • 刘红 1,2
  • 肖宇 1
  • 肖杨 2,3
  • 吴焕然 2,3
1. 内江师范学院 建筑工程学院,四川 内江 641112; 2. 重庆大学,山地城镇建设与新技术教育部重点实验室,重庆 400045; 3. 重庆大学,土木工程学院,重庆 400045

中图分类号: TU432

最近更新:2025-05-13

DOI:10.11835/j.issn.2096-6717.2023.009

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

随着可再生能源和地源热泵技术的不断发展,浅层地热能的开发逐渐成为学者们重点研究的课题之一,但其理论研究远远落后于工程应用,尤其是土体在应力场和温度场复杂耦合作用下的力学机理研究尚不成熟。对于砂土、黏土、粉土等单一土体,学者们从温控试验和本构理论两方面展开研究,取得了一系列成果,对土体的热力学特性有一定认识。为了更全面深入地认识土体的热力学特性,使热本构模型在能源工程中更贴合实际地进行推广和应用,首先概述土体热力学性质的试验研究现状,随后,重点综述基于不同理论框架建立的土体热力学本构关系研究进展和现状,阐述热力学本构关系在实际工程中的应用,最后,针对目前存在的问题,提出进一步研究的建议,讨论并展望土体热力学本构关系的研究发展趋势。

近年来,清洁能源的高效率开发逐渐成为能源开发进程中的重中之[

1]。作为清洁能源的一种,浅层地热能的开发利用自然成为关注的重点课[2-4]。浅层地热能是指通过地源热泵换热技术,利用蕴藏在地表以下200 m以内、温度低于25 ℃的热能。其主要蕴藏在地表以下一定深度范围内的土体、地下水和地表水中。利用地源热泵技术,在夏季,可实现将建筑物或构筑物中的热源供给温度较低的土体,达到夏季制冷的效果;在冬季,可将地表以下土体中的热源供给地面的建筑物或构筑物中,达到冬季供暖的效果,从而使建筑物或构筑物达到“冬暖夏凉”,功能类似于空调,且该方法具有环保无污染、耗能低、可循环利用等优点。另外,浅层地热能还被用于农业中的温室大棚,养殖业中的水产养殖,旅游业中的温泉疗养,工业中的产品加工(类似于锅炉),电力行业中的地热发电等方面。中国浅层地热能分布广泛,发展潜力巨大,为了更有效地开发浅层地热能,越来越多的学者开始关注浅层地热能开发过程中温度对周围土体力学性质的影响。此外,随着核废料处[5]、能源[6-8]、跨越寒区和酷暑区的高速公[9-11]、储热结[12-15]等的不断发展和广泛应用,温度对土体工程性质的影响逐渐成为岩土工程界的研究热点。

对于土体热力学性质的研究,通常包括试验研究、理论研究和数值研究三方面。通过开展考虑温度影响的室内试验,即温控试验,探索温度场和应力场耦合作用下土体的应力变形特性,并将其与常规应力场中土体的应力特性进行比较分析,得出土体的热力学特性,探索温度对土体变形、强度、剪胀方程、屈服方程、临界状态等方面的影[

16-20]。应用弹塑性理论,基于一定的假定,结合温控试验发现的土体应力变形规律,开展理论研究,提出合理的土体热力学本构关[21-24]。利用有限元软件的二次开发平台,将热力学本构关系应用于有限元软件[25-27],并对缩尺的模型试[28-31]或足尺的现场试[32-34]进行建模分析,通过数值分析结果和试验监测结果的对比分析,验证数值分析方法的可靠性和准确性。最终,将数值分析方法应用于实际能源工程的设计和施工中,预测能源工程开发过程中可能出现的危险点或薄弱点,提出应对措施,提高能源结构的安全性,从而减少安全事故的发生,提高能源结构的开发效率,为浅层地热能的开发利用奠定坚实的理论基础。

基于近年来对土体热力学本构关系的研究,结合笔者的部分研究成果,综述土体的温控试验、基于不同理论框架建立的热力学本构关系以及本构关系在数值分析中的应用等方面的主要进展,分析目前土体热力学本构关系仍需进一步突破的方向,为浅层地热能、能源桩等温度相关实际工程提供重要的理论依据。

1 土体热力学试验研究

土体热力学本构关系的提出需以土体的应力-应变关系为研究对象,在大量温控试验的基础上,得出土体的屈服特性、剪胀特性、固结特性等随应力和温度的演变规律,在弹塑性理论框架下,基于一定的基本假设,建立能够合理描述土体的基本特性、亚基本特性和关联基本特[

35]的数学表达形式。因此,在提出热力学本构关系之前,开展一系列温控试验,总结土体的热力学性质是不可或缺的一环。

为明确温度对土体本构关系的影响,确定本构模型相关参数,进而建立可靠的土体热力学本构模型,不少学者在常规杠杆式固结仪、四联直剪仪、静三轴仪、动三轴仪、空心扭剪仪和真三轴等室内试验仪器的基础上,设置螺旋型加热管、热电偶、水浴箱、不锈钢金属压力罩和隔热罩等设备,赋予常规试验仪器加热和温度监测功能,从而能够进行一[

16]或三[20]的温控固结试验、温控直剪试[36-38]、温控静三轴试[39-44]、温控真三轴试[45]、温控动三轴试[46]和温控空心扭剪试[47-49]

通过一维温控固结试验,Abuel-Naga[

16]发现,饱和黏土的轴向变形随温度的增加而线性增加。通过三维温控固结试验,Ng[20]发现,在热固结过程中,饱和砂土发生的体积变形与砂土的相对密实度和有效应力有关:有效应力一定时,随着相对密实度的增加,试样逐渐从热压缩向热膨胀转化;相对密实度一定时,随着有效应力的增加,试样从热膨胀转变为热压缩。因此,在建立饱和砂土的热力学本构模型时,应考虑试样初始相对密实度、有效应力和温度的耦合作用。

通过温控直剪试验,李春红[

36-38]发现,桩-土接触面的剪切强度低于周围土体的剪切强度,且法向应力越大,该差值越明显。此外,随着温度的升高,剪切强度略有增大。相对于桩基和土体而言,桩基与土体的接触面是最薄弱的环节,在之后的本构理论和工程应用研究中,应给予桩-土接触面足够的重视。

通过温控静三轴试验,郭桢[

50]发现,饱和黏土的剪切强度随着围压的增加而增加,随着温度的增加而降低,应力-应变曲线呈典型的双曲线特征。通过摩尔应力圆得出,其黏聚力和内摩擦角随着温度的增加而降低,呈现热软化特征,且温度效应与围压大小有关,围压越大时,软黏土的温度效应越明显。祁良[51]发现,在不排水剪切条件下,孔隙水压力随着围压的增大而增大,随着温度的增大而减小。此外,临界状态下的应力比随着温度的增加呈线性增加趋势。Cekerevac[17]发现,饱和黏土的热体积变形与土体的应力历史有关,即与超固结比有关,随着超固结比的增加,饱和黏土的热体积变形从热压缩变形逐渐向热膨胀变形过渡。此外,还发现饱和黏土的屈服应力与温度有关,且随着温度的升高呈对数形式降低,但正常固结线(NCL)和临界状态线(CSL)的斜率与温度无关。通过温控真三轴试验,潘[45]发现,随着温度的降低,钙质黏土的应变硬化现象更明显,土体的强度增加。

考虑到实际能源工程中经常遇到车辆荷载、地震荷载等循环荷载的作用,不少研究者通过开展饱和与非饱和状态下的温控动三轴试验,发现非饱和土体的累积塑性变形与温度和基质吸力有关,且基质吸力一定时,累积塑性变形随着温度的增加而增加,当温度一定时,累积塑性变形随着基质吸力的增加而减[

46]。考虑到尺寸效应的影响,Liu[47-49]进行了一系列温控空心扭剪试验,发现密砂的热体积变形仅与温度有关,与有效应力无关,且随着温度的增加呈线性增加趋势,不排水剪切强度随着有效应力的增加而增加,随着温度的增加而线性减小,呈现出热软化现象,临界状态线未发现明显变化。

2 土体热力学本构关系研究

本构关系又称为土体的力学本构方程,或土体的应力-应变模型,是描述土体力学特性的数学表达式。通过开展温控试验,学者们对土体在不同工况下的热力学性质有所认识,结合温控试验结果,提出力学或热屈服面方程、剪胀方程、临界状态方程等,随后,基于不同的弹塑性理论框架,建立考虑温度效应的土体本构关系。

2.1 Duncan-Chang模型

作为非线性弹性模型的典型代表,邓肯-张模型包括E-νE-B两种模型,其模型参数均可由常规三轴试验结果确定。

郭桢[

50]通过温控三轴不排水剪切试验数据,分别得出不同温度作用下的邓肯-张模型参数,再将参数代入应力-应变关系式,则得到考虑温度效应的邓肯-张非线性弹性模型,并将该模型预测曲线与试验数据进行比较分析。在Duncan-Chang模型的基础上,谢云[52]考虑基质吸力的影响,建立常温下非饱和土的非线性本构方程,通过非饱和土的温控试验数据拟合,提出考虑温度影响的非饱和土总黏聚力方程,从而得到考虑温度影响的非饱和土强度方程。结合试验数据,得出切线体积模量随温度和基质吸力的变化规律,提出考虑温度和基质吸力影响的非饱和膨胀土的非线性模型。当温度为常温时,该模型可以退化为常温下非饱和土的非线性模型,当基质吸力为0时,该模型可退化为Duncan-Chang双曲线模型。Liu[53]从双曲线模[54]和指数模[55-57]的切线模量出发,引入参数θ,建立幂函数模型的切线模量一般表达式,同时引入摩尔-库伦强度准则,提出适用于黏土的常温幂函数型应力-应变关系式。依据宁波软黏[50]、Bourke粉[58]、沥青瓦混合[59]、高岭[17]等不同类型和性质的土体温控三轴试验数据,分别建立温度与该幂函数模型中的黏聚力、内摩擦角、幂指数和切线体积模量的关系式,并进行归一化处理,从而得到考虑温度影响的适用于黏土的幂函数型非线性弹性模型。

2.2 Cam-Clay模型

英国剑桥大学的Roscoe[

60]提出了适用于正常固结饱和黏土的经典Cam-Clay模型,因其模型参数均有明确的物理意义,且可由常规室内三轴试验进行确定,从而广泛应用于岩土工程中。

Hueckel[

61]通过三轴试验,探究常温下碳酸盐含量对饱和黏土峰值强度或表观最大预压各向同性应力以及剪切破坏的影响。发现饱和黏土的热弹性变形主要受围压影响,与碳酸盐含量无明显关系;但其热塑性变形则需考虑碳酸盐的影响,碳酸盐含量越高,土体热软化现象越不明显。此外,通过温控试验,还研究了温度变化过程中饱和黏土的强度、温度引起的超固结现象、剪切破坏以及不排水剪切过程中孔隙水压力的变化规律。依据试验数据,在剑桥模型的基础上,提出了一种考虑碳酸盐含量的饱和黏土热弹塑性本构模型。刘红[62]通过不同温度作用下饱和黏土的压缩曲线发现,虽然热固结和力学固结的作用机理不同,但热固结阶段和常温下力学固结阶段发生的变形量相同。因此,将土体的热力学固结过程等效为纯力学固结过程,在修正剑桥模型的基础上,通过推导纯力学固结过程中弹塑性体积变形,结合非关联流动法则,推导土体的塑性剪切变形,从而得出土体总的体积和剪切变形,最终提出考虑温度影响的弹塑性本构模型。

在修正剑桥模型的基础上,在临界土力学理论框架下,Abuel-Naga[

63]得出常温下土体的屈服函数和塑性势函数分别为

ppc=M2+α2M2+(η-α)2 (1)
ψ=dεvpdεsp=-βlnηM (2)

式中:pc为各向同性先期固结应力;η为应力比,即η=dq/dpψ为塑性势函数;dεvpdεsp分别为塑性体积变形增量和塑性剪切变形增量;αβ为材料参数。通过温控试验数据,建立温度与材料参数αβ的关系式,从而提出一种适用于饱和黏土的热弹塑性本构模型。该模型中的材料参数α随着温度的增加而线性增加,当α为0时,该屈服面退化为修正剑桥模型的屈服面,该模型退化为不考虑温度影响的修正剑桥模型,如图1所示。

图1  SBS等体积截面的几何形状随参数α的变化规[

63]

Fig. 1  Change in geometry of constant-volume section of SBS with fabric parameter α[

63]

Cui[

64]通过分析已有的温控试验数据发现,土体压缩曲线斜率与温度无关,先期固结压力随着温度增加呈非线性降低趋势,从而导致土体弹性区域减少,而随着超固结比(OCR)的增加,土体的热体积变形从热压缩向热膨胀过渡。随后,在修正剑桥模型的基础上,分别建立了力学固结和热固结屈服函数(如图2所示),通过三维空间化,利用关联流动法则,提出了一种考虑应力历史和温度影响的适用于饱和黏土的热力学本构模型。

(a)  力学屈服曲线随参数α0的变化规律

(b)  热屈服曲线随参数β的变化规律

图2  力学固结和热固结屈服函[

64]

Fig. 2  Yield functions of loading and thermal consolidation[

64]

在Cui[

64]的热本构模型基础上,利用双屈服面塑性理[66],Hong[65]提出了一种可以描述天然饱和黏土的有限热力学弹性区域以及弹性特性向塑性特性平稳转换的热力学模型。该模型引入了两种塑性机制:一种是再现高超固结比下饱和黏土发生膨胀和收缩的热塑性特性,另一种是描述温度对屈服行为的影响。此外,该模型采用与上述两种塑性机制相关的附加屈服面,即内屈服面,用于考虑现有热屈服面内部的塑性行为,同时定义了与内屈服面相关的渐进塑性硬化机制,使塑性模量在屈服面内的热加载过程中平滑变化。Tang[67]运用Alonso模[68]描述常温下非饱和膨胀土的力学特性,利用Cui[64]的模型描述饱和土体的热力学特性,结合这两种模型,运用双层结[69]的概念,将土体划分为微观结构水平(即由各向异性团聚体组成的黏土颗粒水平)和宏观结构水平(即更大尺寸的土体结构水平),提出了一种适用于非饱和膨胀土的热力学模型。

Graham[

70]提出了一种考虑温度影响的修正剑桥模型,该模型能够预测正常固结和超固结饱和黏土在排水加热后产生更高的不排水剪切强度和更低的孔隙水压力,而经历不排水加热过程的饱和黏土则产生更高的孔隙水压力和更低的不排水剪切强度,这主要是由于屈服点区域和超孔隙比的减小所致。Hamidi[71]仅用一个屈服面,在修正剑桥模型基础上,提出了一种考虑应力水平和温度影响的热力学本构模型。在该模型基础上,利用加热后土体的压缩曲线和常温时压缩曲线与临界状态线之间的关系,结合临界状态理论,Hamidi[72]建立了一种考虑应力历史的热力学本构模型。Wang[73]在修正剑桥模型的基础上引入两个参数αθ,分别用于考虑应力引起的土体各向异性和温度对压缩曲线的影响,同时,采用两个屈服面,即当前屈服面和参考屈服面来描述土体在力学固结和热固结过程中产生的塑性变形,最终提出了一种适用于饱和黏土的各向异性热弹塑性本构模型。

2.3 边界面模型

前述热力学本构模型常用于模拟土体在大应变情况下的应力变形特性,但这些模型通常假定屈服面形状与温度无关,仅尺寸随温度变化,导致预测土体剪切特性时产生不可忽略的误差。因此,Zhou[

74]运用边界面理[75-77],考虑屈服面的形状和尺寸皆随温度变化而发生相应变化,提出了一种可考虑小应变和大应变的饱和土体热弹塑性模型。该模型可描述升温和降温过程中土体产生的体积变形以及正常固结和超固结土体在排水和不排水条件下的剪切特性,特别是小应变(小于0.001%)下土体剪切模量的退化过程。

在该模型基础上,在边界面内部区域考虑塑性应变,Zhou[

78]推导出温度-水-循环荷载耦合作用下非饱和土体的应力变形关系。结合Bishop应力、偏应力、基质吸力、温度、比热容和饱和度的变化对非饱和土体的影响,提出了一种可模拟非饱和土体在温度变化、循环荷载作用下力学特性的边界面模型。

此外,Zhou[

79]采用边界面模拟先期固结应力,利用记忆面模拟最大主应力随温度循环变化的演化过程,通过温控试验发现,边界面与记忆面之间的距离和塑性模量都随着温度循环过程中塑性应变的累积而增加。随后,在双屈服面理[66]和单屈服面边界面热力学模[74]的基础上,提出了一种可考虑多重温度循环的饱和土体边界面模型。Laloui[23]通过分析已有文献的温控试验数据,得出温度变化对土体的体积变形、先期固结应力、正常固结线、剪切强度、孔隙水压力等特性的影响规律。在临界状态理论框架下,运用多机制塑性理论和边界面理论,提出了一种适用于复杂应力路径、排水和不排水剪切条件的热力学模型。陈艳妮[80]基于热力学理论,建立屈服面,采用非关联流动法则,同时,在边界面模型框架下,提出了一种适用于超固结黏土的考虑温度效应的边界面模型。

2.4 UH模型

在剑桥模型的基础上,结合广义Mises、SMP、Lade等强度准则,姚仰平[

81-83]提出考虑渐进状态、颗粒破碎、各向异性条件下的系列UH模型。

通过已有的温控试验数据,姚仰平[

84]总结土体的压缩特性、先期固结压力特性以及剪切特性等,采用超固结土潜在强度的确定方[85],建立某一温度作用下土体的临界状态应力比表达式

MT=6χ0ξT1+χ0ξT-χ0ξT (3)

其中:

ξT=1-γlnTT0 (4)
χ0=M02123-M0 (5)

式中:MTM0分别为当前温度T和初始温度T0作用下的临界状态应力比;ξTγχ0均为材料参数。最后,基于SMP准则,将模型进行三维化,提出适用于超固结土体的考虑温度影响的本构模型。该模型可描述饱和超固结土体的热变形特性,以及温度不变时,正常固结土和超固结土体在复杂应力路径下的应力变形特性。在该模型的基础上,姚仰平[

86]将不同温度作用下的屈服线与温度不变时不同基质吸力作用下的屈服线进行结合,建立了可同时考虑温度和基质吸力作用的屈服面,在临界土力学框架内,提出了适用于正常固结和超固结非饱和土体的热力学模型。

在热UH模[

84]的基础上,姚仰平[87]推导了考虑温度影响的不排水剪切强度表达式,并提出了一种可考虑热破坏现象的本构模型,即在不排水条件下,常温剪切至某状态时,应力比保持不变,增加温度至土体达到临界状态应力比。此外,孔立明[88]在考虑时间效应的三维弹-黏-塑性本构模[89]的基础上,建立温度与模型参数的关系式,从而推导考虑温度和时间效应的应力-应变关系式,并将屈服面与UH 模[90]中的屈服方程和流动法则相结合,提出了一种适用于超固结土体的考虑温度和时间效应的热-黏-弹-塑性本构模型。

2.5 热力学模型

热力学是从宏观角度研究物质的热运动性质及其规律的学科,主要从能量转化的角度研究物质的热性质,揭示能量从一种形式转换为另一种形式时所遵循的宏观规律。

Zhang[

91]通过定义弹性势能密度函数,推导有效应力、弹性应变和干密度之间的超弹性关系式,运用热力学理[92-96],定量描述材料非弹性变形发展等不可恢复的能量过程;采用颗粒熵的概念,描述由于颗粒不规则运动引起的颗粒尺度上的动能涨落和弹性势能涨落,提出了一种能够模拟温度循环作用下饱和黏土的非等温固结过程的热力学模型。张志超[97]引入耗散力、耗散流和颗粒熵的概念,推导出一种非弹性变形的多物理场力学模型,该模型可以描述温度升高时饱和土体内部结合水向自由水转化而发生的能量耗散过程(即饱和土体的非等温固结过程),还可以描述经历不同应力历史后,饱和土体的不排水剪切过程。在该模型基础上,Zhang[98]引入适用于单相固体材料的流体动力学理论(GSH),构建了能够描述黏土在温度和应力耦合作用(T-M)下应力变形机理的理论模型(TTS)。

Bai[

99]基于多孔颗粒材料在热-力耦合作用下发生粒子重排的现象,引入粒子熵、粒子温度、迁移系数和势能密度函数等概念,建立了适用于岩土材料的热力学模型。该模型能考虑不同温度和饱和度条件下岩土材料的能量耗散过程和土-水特征曲线的变化规律,能较准确地描述正常固结饱和土体在升温过程中的不可逆固结现象以及多重加热-降温过程中土体固体颗粒发生不可逆重组所导致的岩土材料老化现象;此外,该模型还能较准确地描述围压、基质吸力和温度对非饱和土固结过程的影响,其物理机制与饱和土体热固结过程的物理机制相同。Yang[100]将该模型扩展到一种特殊的非饱和土体(细粒气态土),该种土体中含有尺寸较正常颗粒尺寸大很多的密封状态的气泡,结合考虑大气泡的理论模[101],建立了描述细粒气态土力学特性和温度效应的热力学模型。该模型能够考虑气体对土体骨架塑性变形的影响以及不同排水条件和超固结比作用下温度对细粒气态土固结和不排水剪切特性的影响。Yang[102]基于颗粒物质的热力学机理,考虑温度对细观能量耗散的影响,建立了描述饱和砂土热力学特性的模型。Golchin[103]在能量势中引入热弹性,将热力学原理嵌入到新提出的耗散势中,提出了一种能够从微观尺度定性描述细粒土热力学性质的模型。

2.6 其他模型

Kurz[

104]在常温弹-黏-塑性本构模型的基础上,将饱和黏土的应变分为弹性和塑性两个部分,且塑性应变部分包含黏性应变,从而提出了一种适用于饱和黏土的半经验弹-热-黏-塑性本构模型。在该模型中,黏性应变由蠕变率系数定义,其值与温度和塑性指数有关,与围压和超固结比无关,Laloui[105]通过先期固结压力在加热过程中的变化特征,研究屈服极限随温度的演化规律,从而将等温条件下的多机构弹塑性模型推广到非等温条件,用于考虑黏土因加热而呈现的非线性和硬化特性。该模型能够描述黏土在不同温度和应力作用下的完整行为,即等温或非等温、排水或不排水剪切、不同温度和应力历史条件下土体的力学行为。在该模型的基础上,Laloui[106]将其延伸到循环荷载条件,提出了一种循环荷载作用下饱和土体的非等温塑性模型。在双硬化模[108-110]和温控试验数据的基础上,Liu[107]引入两个硬化参数,分别考虑温度和超固结比对土体应力变形的影响,从而提出了适用于超固结饱和黏土的热弹塑性本构模型。

在温控循环试验数据的基础上,Ma[

111]运用安定理[112-114],提出一种热稳定线(TSL)。该线可表示土体在温度循环作用下所处的稳定状态,且与温度循环阶段有关,当土体经历加热阶段时,若土体位于TSL上方,表明土体产生了不可逆的体积压缩变形(热塑性变形),若土体位于TSL下方,则产生了热弹性变形;当土体经历降温阶段时,将产生热弹性变形;利用亚塑性理[115],提出了一种适用于正常固结或轻微超固结饱和土体的本构模型,该模型可以描述饱和土体经历一重或多重温控循环后的累积不可逆体积变形。Masin[115]运用修正剑桥模型确定正常固结线(NCL)和临界状态线(CSL),运用广义亚塑性理论表征屈服面和不同超固结比的土体所呈现的非线性,运用晶间应变概念表述土体小应变阶段的特性,提出了一种可考虑应力历史和小应变的亚塑性本构模型。在此基础上,Mašín[116]提出了一种可描述非饱和土体非等温加热条件下的热力学亚塑性本构模型,该模型可用于正常固结和超固结土体。

Zhang[

117]将加热过程中温度变化使土体产生的热弹性变形部分等效为土体发生力学卸载过程。两种不同作用过程(加热和力学卸载)中产生的弹性变形保持相等,并将该理论上的力学卸载应力称为等效应力,用以表示温度对土体弹性变形的影响,如图3所示。运用上加载屈服面理论,推导出等效的下加载屈服面,用以表示温度和应力对土体塑性变形的影响。在修正剑桥模型的基础上,仅引入一个参数,提出了一种适用于超固结土体的热弹塑性本构模型。在此模型基础上,张升[118]引入一个参量,即线性热膨胀系数,提出了一个考虑结构性的软岩热弹塑性本构模型。该模型可考虑软岩热增强和热减弱两种现象,且初始结构性的不同可使软岩在热减弱和热加强之间相互转化。

图3  实际应力与温度变化引起的等效应力导致的体积应变相[

117]

Fig. 3  Similarity of volumetric strain caused by real stress and equivalent stress due to change of temperature[

117]

在实际能源结构工程中,土体长期经历应力和温度的影响,时间对土体力学特性的影响显得格外重要。因此,非常有必要研究温度和时间作用下软岩等土体的蠕变破坏特性。Zhang[

119]开展一系列软岩的热蠕变试验,并根据试验结果,运用已有的热力学模[117],提出了一种适用于超固结饱和土体的考虑温度和时间效应的本构模型。Coccia[22]通过温控试验发现,加热正常固结土体将使土体加热前的二次压缩过程加速完成,且仅发生压缩现象,但加热超固结土体时,将发生热膨胀或热压缩现象;基于温控试验数据,提出了一种可描述饱和、非饱和土体在不同应力状态和加热速率条件下热体积变形的本构模型。Laloui[120]提出了一种可描述一维固结温控试验中考虑温度和应变率变化、适用于饱和黏土的热-黏-塑性本构模型。

2.7 模型的应用

通过温控试验总结土体的热力学性质,结合相关理论建立土体的本构模型,其最终目的是将本构模型通过二次开发引入有限元软件中,并通过数值分析方法开展工程应用。

祁良[

51]通过温控试验得出,软黏土的临界状态应力比M随温度的增加而线性增加,同时,根据试验数据进行拟合,提出M与温度T的线性方程。利用ABAQUS有限元软件,采用修正剑桥模[121]对三轴试样进行有限元模拟,固结和剪切条件与实际试验一致,同时在固结过程添加温度条件。通过模拟值和试验值的对比分析发现,常温(25 ℃)下试验值与模拟值吻合较好,但当温度为45、65 ℃时,试验值与模拟值有较大误差,该误差是由于模拟过程中采用的修正剑桥模型并未考虑温度影响所致。此研究也间接说明,在温度相关的实际工程中,提出合适的考虑温度影响的本构模型非常必要。

费康[

27]在有限元软件COMSOL 5.0内置的修正剑桥模型的基础上,将屈服函数更改为Zhou模[74]中的屈服面,并通过修改其他材料参数,对Zhou热边界面模[74]进行二次开发;通过对一维固结问题、常温等向压缩问题、排水条件下的温度循环问题等进行模拟,验证了二次开发的可靠性。陆浩杰[122]将ACMET-T本构模[23]在ABAQUS中进行二次开发,并对温控三轴试验结果进行模拟分析,将模拟结果与试验结果进行对比,验证该数值分析方法的可行性和准确性。冯兴[123]将热UH模[84]中的非对称刚度矩阵修正为对称刚度矩阵,采用Newton-Raphson算法和半隐式回映的应力更新算法,编制热UH模型的有限元程序;利用有限元非线性求解平台,实现热UH模型在有限元中的应用,并与温控试验数据进行对比分析,验证了程序的可靠性。王兴[25]引入一个附加硬化参数,在边界面塑性理论框架下,提出考虑水合物和温度对土体应力变形影响的边界面模型;通过ABAQUS的用户材料子程序接口,开发该模型的UMAT子程序,并模拟了不同水合物条件下能源土的应力变形特性。费康[26]通过ABAQUS子程序对Zhou模[74]进行二次开发,材料的热膨胀系数利用ABAQUS内置的材料性质定义,其余力学参数则通过UMAT接口定义,应力积分过程采用Euler算法,研究了温度对黏土压缩特性和剪切特性的影响;随后,建立能源桩和地基的数值模型,其中桩-土接触面采用薄层单元,材料模型及参数与周围地基土一致,地基土的应力-应变关系采用二次开发的热边界面模型,并利用该数值模型,计算分析了桩顶及桩身不同位置的温度响应、桩顶位移、桩身侧摩阻力与桩身轴力等。王浩[124]在TTS模[98]框架下建立了可描述水泥石在热-力耦合作用下力学特性的黏-弹-塑性模型,并基于MATLAB平台,开发瞬态传热平面有限元程序,对地热井的1/4横断面进行数值模拟,研究了升温过程中套管与水泥环接触面以及水泥环与围岩界面的应力变形发展规律。

3 研究建议

3.1 热力学试验研究

1)现有的温控试验大多局限于黏土、粉土、砂土等单一土体,是一种理想状态下的土体,缺乏对粉砂、黏土-膨润土等混合土体热力学行为的研究。实际工程中的土体并不是纯砂土、纯粉土或纯黏土等单一土体,而是一种具有不同细粒含量的砂土、粉土或黏土的混合土体,且粉土或黏土占整个土体的比例不同时,土体呈现的热力学特性也有所不同。在今后的温控试验研究中,建议针对不同混合体或实际工程中的土体开展热力学试验,如此,室内的热力学试验结果更接近于实际工程中的监测值,更具有参考价值。

2)目前已有的温控试验主要集中于重塑土,该试样具有分层沉积特性,可考虑初始各向异性,但对于原状土的温控试验研究较少,即考虑土体的次生各向异性的研究较少。在今后的温控试验研究方面,建议多针对原状土,多考虑土体的结构性进行。

3)已有的温控静三轴、动三轴或空心扭剪试验均考虑土体在温度作用下的力学性质,仅考虑由温度引起的土体本身体积或强度变化,未考虑与温度有关的结构物以及结构物与周围土体接触面的热力学性质。而能源结构物与土体接触面往往是整个结构的薄弱环节。在今后的试验研究方面,建议多开展能源结构物和土体的模型试验以及现场的热响应试验,这样既能考虑温度变化对能源结构物和土体本身的力学性质的影响,又能考虑两者之间接触面的影响,从而更全面地考虑能源结构物和土体之间的相互作用。其试验结果更贴合实际工程,可以更好地应用于实际能源工程的设计与施工中。

4)以温控静三轴试验为例,已有的热力学试验过程常常为:土体先在常温下进行力学固结,随后,压力不变,进行加热或温度循环等热固结过程,然后,温度不变,在排水或不排水条件下进行剪切过程。在该过程中,温度和力学是分开加载的,不是真正意义上的热力耦合作用,而在实际能源工程中,土体中的应力场和温度场是同时存在的。为了减少室内试验和实际工程的误差,开展热破坏、应力-温度耦合加载、非比例加载、多重温控循环等复杂载荷作用下土体热力学行为试验研究尤为重要,同时为相关工程应用提供坚实的理论支持。

5)已有的土体热力学性质,主要是通过温控试验研究土体在温度变化下的变形和强度等宏观响应,是土体整体上的力学特征,但对于土体内部,特别是温度变化下试样不同部位孔隙水和土体颗粒之间的力学变化特性的研究相对较少。在之后的热力学特性研究方面,可利用CT、PFC等手段,研究在温度变化过程中土体内部发生的热力学特性,即从微观维度探索土体的热力学机理。

3.2 热力学模型研究

1)已有的热力学模型主要在剑桥或修正剑桥模型基础上建立先期固结应力、二次压缩系数、超固结比等参数与温度之间的关系,再结合临界状态理论,提出考虑时间效应、应力历史、各向异性等适用于饱和与非饱和粉土(黏土)的热力学模型。虽然考虑的作用形式较多,但土体种类较为单一,主要集中于黏土,对砂土或实际工程中较为常见的砂土-黏土混合物的热力学模型的研究相对较少。在今后的热力学模型方面,建议针对含有一定量粉土或黏土的粉砂类混合土体的力学模型进行研究,提出饱和粉砂在应力场及温度场耦合作用下的状态相关力学模型具有重要的理论意义。

2)已有的热力学模型建模过程大多较为复杂,参数不易确定,只适用于某些特定加载条件下土体的应力-应变响应。此外,大多数模型是基于一维固结或三轴压缩应力状态建立的,关于三维空间中土体强度和变形特性的研究较少。在今后的热力学模型研究中,建立易于确定参数的、考虑三维空间的热力学模型,从而更好地预测土体复杂的热力学特性是非常必要的。

3)目前对土体热力学本构关系的研究仍处于探索阶段。在温控试验的基础上,不少研究者已经建立了一些土体热力学本构关系,但如何在现有的理论基础上,面对复杂载荷条件下(如应力场和温度场耦合加载,非比例加载和升温、多重温控循环、循环荷载等)土体的力学响应,发展出更为合理准确的本构关系,还有待进一步深入研究。

3.3 模型应用研究

已有的数值应用,通过不同的数值积分算法,将热力学模型应用于ABAQUS、COMSOL、MATLAB等软件中,建立考虑温度效应的有限元模型,并对能源结构进行数值模拟。由于对数值积分算法的认识还不够统一,热力学模型在实际工程中的应用远远滞后于本构理论的发展。对于不同的有限元软件,采用的数值积分算法各不相同。此外,已有的数值应用常模拟温控三轴试验过程和结果,数值模拟过于简单,没有能源结构物的参与,与实际工程差异较大。

在今后的数值应用中,针对不同框架下建立的热力学模型,建立可靠且通用的数字积分算法,并将该算法开发到有限元中,利用有限元对缩尺的模型试验或足尺的现场热响应试验进行模拟,将模拟值与监测值进行对比分析,从而验证该数值方法的可靠性,使模拟值更具有普适性,更好地应用于实际能源工程的设计与施工中。

4 结论与展望

浅层地热能是一种典型的可持续能源,其开发技术具有形式多样、高效节能、绿色低碳等特点。中国浅层地热资源丰富、类型齐全、分布广泛,能够形成或催生多领域、更广泛的利用方式,具有广阔的工程应用前景。地热资源开发过程中涉及应力场和温度场的耦合作用,土体、结构物以及两者之间接触面的力学行为的外在表现与内在机理均非常复杂。

微观维度上的热力学特性研究尚不多见,宏观维度上的热力学试验研究多为力学荷载和温度荷载分开加载,是“假”热-力耦合作用,而对于力学荷载和温度荷载同时加载的“真”热-力耦合作用的试验研究较少。因此,可在“假”热-力耦合温控试验基础上,通过分析力学固结和热固结两个阶段土体所发生的应力变形特性,分析该特性产生的力学机理,从而分析更为复杂的“真”热-力耦合温控试验中土体的热力学特性及其机理。室内温控试验研究还可以从常规的应力路径(力学固结-热固结-剪切)过渡到主应力旋转等复杂载荷下土体的热力学响应。室内温控试验主要研究土体的热力学特性,未考虑结构物的影响,其结果仅适用于能源结构工程的地基变形,即仅考虑能源结构物周围土体的热应力变形,而无法考虑能源结构物本身及其与周围土体接触面的热力学特性。因此,通过缩尺模型槽试验(如能量桩模型试验)和足尺现场热响应试验可以监测能源结构物、周围土体及其接触面的应力变形特性,结果更接近于实际能源工程。此外,将微观尺度上的温控试验数值模拟,宏观尺度上的室内常规温控试验,模型槽试验与现场热响应试验结合起来,通过开展不同尺度的热力学试验,全方位考虑尺寸效应对土体及结构物热力学性质的影响,从而基于相关理论,提出考虑土体热力学微观机理与宏观性质的本构关系,从而加深对土体热塑性变形机理的认识,这也是今后土体热力学性质研究的重中之重。

对于土体热力学本构模型的研究,其目的是进行工程应用,因此,加强土体热力学本构关系的二次开发,充分利用有限元计算分析软件开展相关工程数值模拟研究,建立考虑温度效应的土体数值分析方法非常必要。

总之,尽管目前已经取得了一定的研究成果,这些成果也在浅层地热能开发过程中发挥着非常重要的理论指导作用,但关于土体热力学本构关系的研究还处于起步阶段,在热力学试验、本构理论和数值应用方面仍存在诸多问题,亟须克服。这也需要更多的岩土工作者加倍努力,积极创新,不畏困难,从不同角度开展研究,从而建立土体热力学性质的研究体系,进一步认清土体的热力学机理,将其更好地应用于能源工程中。

参考文献

1

李政, 张东杰, 潘玲颖, . “双碳”目标下我国能源低碳转型路径及建议[J]. 动力工程学报, 2021, 41(11): 905-909, 971. [百度学术] 

LI Z, ZHANG D J, PAN L Y, et al. Low-carbon transition of China’s energy sector and suggestions with the “Carbon-peak and carbon-neutrality” target [J]. Journal of Chinese Society of Power Engineering, 2021, 41(11): 905-909, 971. (in Chinese) [百度学术] 

2

马冰, 贾凌霄, 于洋, . 世界地热能开发利用现状与展望[J]. 中国地质, 2021, 48(6): 1734-1747. [百度学术] 

MA B, JIA L X, YU Y, et al. The development and utilization of geothermal energy in the world [J]. Geology in China, 2021, 48(6): 1734-1747. (in Chinese) [百度学术] 

3

马峰, 王贵玲, 魏帅超, . 2018年地热勘探开发热点回眸[J]. 科技导报, 2019, 37(1): 134-143. [百度学术] 

MA F, WANG G L, WEI S C, et al. Summary of hot research topics in geothermal exploitation in 2018 [J]. Science & Technology Review, 2019, 37(1): 134-143. (in Chinese) [百度学术] 

4

庞忠和, 胡圣标, 汪集旸. 中国地热能发展路线图[J]. 科技导报, 2012, 30(32): 18-24. [百度学术] 

PANG Z H, HU S B, WANG J Y. A roadmap to geothermal energy development in China [J]. Science & Technology Review, 2012, 30(32): 18-24. (in Chinese) [百度学术] 

5

GENS A, SÁNCHEZ M, GUIMARÃES L D, et al. A full-scale in situ heating test for high-level nuclear waste disposal: Observations, analysis and interpretation [J]. Géotechnique, 2009, 59(4): 377-399. [百度学术] 

6

BOURNE-WEBB P J, AMATYA B, SOGA K, et al. Energy pile test at Lambeth College, London: Geotechnical and thermodynamic aspects of pile response to heat cycles [J]. Géotechnique, 2009, 59(3): 237-248. [百度学术] 

7

FADEJEV J, SIMSON R, KURNITSKI J, et al. A review on energy piles design, sizing and modelling [J]. Energy, 2017, 122: 390-407. [百度学术] 

8

KNELLWOLF C, PERON H, LALOUI L. Geotechnical analysis of heat exchanger piles [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(10): 890-902. [百度学术] 

9

CROLL J G A. The role of thermal ratcheting in pavement failures [J]. Proceedings of the Institution of Civil Engineers - Transport, 2009, 162(3): 127-140. [百度学术] 

10

KERTESZ R, SANSALONE J. Hydrologic transport of thermal energy from pavement [J]. Journal of Environmental Engineering, 2014, 140(8): 04014028. [百度学术] 

11

POTHIRAKSANON C, BERGADO D T, ABUEL-NAGA H M. Full-scale embankment consolidation test using prefabricated vertical thermal drains [J]. Soils and Foundations, 2010, 50(5): 599-608. [百度学术] 

12

BAŞER T, LU N, MCCARTNEY J S. Operational response of a soil-borehole thermal energy storage system [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(4): 04015097. [百度学术] 

13

BOURNE-WEBB P, BURLON S, JAVED S, et al. Analysis and design methods for energy geostructures [J]. Renewable and Sustainable Energy Reviews, 2016, 65: 402-419. [百度学术] 

14

BRANDL H. Energy foundations and other thermo-active ground structures [J]. Géotechnique, 2006, 56(2): 81-122. [百度学术] 

15

LALOUI L, DI DONNA A. Understanding the behaviour of energy geo-structures [J]. Proceedings of the Institution of Civil Engineers - Civil Engineering, 2011, 164(4): 184-191. [百度学术] 

16

ABUEL-NAGA H M, BERGADO D T, RAMANA G V, et al. Experimental evaluation of engineering behavior of soft bangkok clay under elevated temperature [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(7): 902-910. [百度学术] 

17

CEKEREVAC C, LALOUI L. Experimental study of thermal effects on the mechanical behaviour of a clay [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28(3): 209-228. [百度学术] 

18

KINOSHITA N, YASUHARA H. Thermally induced behavior of the openings in rock mass affected by high temperatures [J]. International Journal of Geomechanics, 2011, 11(2): 124-130. [百度学术] 

19

NG C W W, ZHOU C. Cyclic behaviour of an unsaturated silt at various suctions and temperatures [J]. Géotechnique, 2014, 64(9): 709-720. [百度学术] 

20

NG C W W, WANG S H, ZHOU C. Volume change behaviour of saturated sand under thermal cycles [J]. Géotechnique Letters, 2016, 6(2): 124-131. [百度学术] 

21

HUECKEL T, FRANÇOIS B, LALOUI L. Explaining thermal failure in saturated clays [J]. Géotechnique, 2009, 59(3): 197-212. [百度学术] 

22

COCCIA C J R, MCCARTNEY J S. Thermal volume change of poorly draining soils Ⅱ: Model development and experimental validation [J]. Computers and Geotechnics, 2016, 80: 16-25. [百度学术] 

23

LALOUI L, FRANÇOIS B. ACMEG-T: Soil thermoplasticity model [J]. Journal of Engineering Mechanics, 2009, 135(9): 932-944. [百度学术] 

24

YAO Y P, ZHOU A N. Non-isothermal unified hardening model: A thermo-elasto-plastic model for clays [J]. Géotechnique, 2013, 63(15): 1328-1345. [百度学术] 

25

王兴, 孔亮, 袁庆盟, . 能源土边界面模型的应力更新算法及算例分析 [J]. 土木工程学报, 2019, 52(Sup2): 155-161. [百度学术] 

WANG X, KONG L, YUAN Q M, et al. The stress update algorithm of bounding surface model on gas hydrate-bearing soil and case study [J]. China Civil Engineering Journal, 2019, 52(Sup2): 155-161. (in Chinese) [百度学术] 

26

费康, 钱健, 洪伟, . 黏土地基中能量桩力学特性数值分析[J]. 岩土力学, 2018, 39(7): 2651-2661. [百度学术] 

FEI K, QIAN J, HONG W, et al. Numerical analysis of mechanical behavior of energy piles in clay [J]. Rock and Soil Mechanics, 2018, 39(7): 2651-2661. (in Chinese) [百度学术] 

27

费康, 刘汉龙, 孔纲强, . 热力耦合边界面模型在COMSOL中的开发应用[J]. 岩土力学, 2017, 38(6): 1819-1826. [百度学术] 

FEI K, LIU H L, KONG G Q, et al. Implementation of a thermo-bounding surface model in COMSOL [J]. Rock and Soil Mechanics, 2017, 38(6): 1819-1826. (in Chinese) [百度学术] 

28

刘汉龙, 王成龙, 孔纲强, . U型、W型和螺旋型埋管形式能量桩热力学特性对比模型试验[J]. 岩土力学, 2016, 37(Sup1): 441-447. [百度学术] 

LIU H L, WANG C L, KONG G Q, et al. Comparative model test on thermomechanical characteristics of energy pile with U-shape, W-shape and spiral-shape [J]. Rock and Soil Mechanics, 2016, 37(Sup1): 441-447. (in Chinese) [百度学术] 

29

党政, 关文, 程晓辉, . CFG能源桩用于混凝土路面除冰降温的试验研究[J]. 中国公路学报, 2019, 32(2): 19-30. [百度学术] 

DANG Z, GUAN W, CHENG X H, et al. Experimental study on CFG energy pile for concrete pavement deicing and cooling [J]. China Journal of Highway and Transport, 2019, 32(2): 19-30. (in Chinese) [百度学术] 

30

吴道勇, 赖远明, 马勤国, . 季节冻土区水盐迁移及土体变形特性模型试验研究[J]. 岩土力学, 2016, 37(2): 465-476. [百度学术] 

WU D Y, LAI Y M, MA Q G, et al. Model test study of water and salt migration and deformation characteristics in seasonally frozen soil [J]. Rock and Soil Mechanics, 2016, 37(2): 465-476. (in Chinese) [百度学术] 

31

黄旭, 孔纲强, 刘汉龙, . 循环温度场作用下PCC能量桩热力学特性模型试验研究[J]. 岩土力学, 2015, 36(3): 667-673. [百度学术] 

HUANG X, KONG G Q, LIU H L, et al. Experimental research on thermomechanical characteristics of PCC energy pile under cyclic temperature field [J]. Rock and Soil Mechanics, 2015, 36(3): 667-673. (in Chinese) [百度学术] 

32

桂树强, 程晓辉. 能源桩换热过程中结构响应原位试验研究 [J]. 岩土工程学报, 2014, 36(6): 1087-1094. [百度学术] 

GUI S Q, CHENG X H. In-situ tests on structural responses of energy piles during heat exchanging process [J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1087-1094. (in Chinese) [百度学术] 

33

陈家威, 张国柱, 郭易木, . 层状地层能源管桩传热性能试验研究 [J]. 岩石力学与工程学报, 2020, 39(Sup2): 3615-3626. [百度学术] 

CHEN J W, ZHANG G Z, GUO Y M, et al. Investigation on heat transfer characteristics of PHC energy piles in multi-layer strata [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(Sup2): 3615-3626. (in Chinese) [百度学术] 

34

CASAGRANDE B, JrSABOYA F, MCCARTNEY J S, et al. Investigation of a field-scale energy micropile in stratified soil under cyclic temperature changes [J]. Geomechanics for Energy and the Environment, 2022, 29: 100263. [百度学术] 

35

姚仰平, 张丙印, 朱俊高. 土的基本特性、本构关系及数值模拟研究综述[J]. 土木工程学报, 2012, 45(3): 127-150. [百度学术] 

YAO Y P, ZHANG B Y, ZHU J G. Behaviors, constitutive models and numerical simulation of soils [J]. China Civil Engineering Journal, 2012, 45(3): 127-150. (in Chinese) [百度学术] 

36

李春红, 孔纲强, 车平, . 能量桩桩-土接触面力学特性室内试验研究 [J]. 建筑节能, 2016, 44(3): 99-105, 114. [百度学术] 

LI C H, KONG G Q, CHE P, et al. Laboratory experimental on interface mechanical properties of energy pile-soil [J]. Building Energy Efficiency, 2016, 44(3): 99-105, 114. (in Chinese) [百度学术] 

37

李春红, 孔纲强, 刘汉龙, . 桩-红黏土接触面温控测试及应力-应变关系研究 [J]. 土木工程学报, 2019, 52(Sup 2): 89-94, 101. [百度学术] 

LI C H, KONG G Q, LIU H L, et al. Study of temperature-controlled pile-red clay interface tests and stress-strain relationship [J]. China Civil Engineering Journal, 2019, 52(Sup 2): 89-94, 101. (in Chinese) [百度学术] 

38

李春红, 孔纲强, 张鑫蕊, . 温控桩-土接触面三轴试验系统研制与验证[J]. 岩土力学, 2019, 40(12): 4955-4962. [百度学术] 

LI C H, KONG G Q, ZHANG X R, et al. Development and verification of temperature-controlled pile-soil interface triaxial shear test system [J]. Rock and Soil Mechanics, 2019, 40(12): 4955-4962. (in Chinese) [百度学术] 

39

BALDI G, HUECKEL T, PELLEGRINI R. Thermal volume changes of the mineral-water system in low-porosity clay soils [J]. Canadian Geotechnical Journal, 1988, 25(4): 807-825. [百度学术] 

40

BAI B, GUO L J, HAN S. Pore pressure and consolidation of saturated silty clay induced by progressively heating/cooling [J]. Mechanics of Materials, 2014, 75: 84-94. [百度学术] 

41

DE BRUYN D, THIMUS J F. The influence of temperature on mechanical characteristics of Boom clay: The results of an initial laboratory programme [J]. Engineering Geology, 1996, 41(1-4): 117-126. [百度学术] 

42

BURGHIGNOLI A, DESIDERI A, MILIZIANO S. A laboratory study on the thermomechanical behaviour of clayey soils [J]. Canadian Geotechnical Journal, 2000, 37(4): 764-780. [百度学术] 

43

FAVERO V, FERRARI A, LALOUI L. Thermo-mechanical volume change behaviour of Opalinus Clay [J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 90: 15-25. [百度学术] 

44

ROMERO E, VILLAR M V, LLORET A. Thermo-hydro-mechanical behaviour of two heavily overconsolidated clays [J]. Engineering Geology, 2005, 81(3): 255-268. [百度学术] 

45

潘旋. 冻结钙质黏土应力-应变特性的真三轴试验研究[D]. 安徽 淮南: 安徽理工大学, 2020. [百度学术] 

PAN X. True tri-axial test on stress-strain characteristics of frozen calcareous clay [D]. Huainan, Anhui: Anhui University of Science & Technology, 2020. (in Chinese) [百度学术] 

46

ZHOU C, NG C W W. Effects of temperature and suction on plastic deformation of unsaturated silt under cyclic loads [J]. Journal of Materials in Civil Engineering, 2016, 28(12): 04016170. [百度学术] 

47

LIU H, LIU H L, XIAO Y, et al. Effects of temperature on the shear strength of saturated sand [J]. Soils and Foundations, 2018, 58(6): 1326-1338. [百度学术] 

48

LIU H, LIU H L, XIAO Y, et al. Influence of temperature on the volume change behavior of saturated sand [J]. Geotechnical Testing Journal, 2018, 41(4): 20160308. [百度学术] 

49

LIU H, MCCARTNEY J S, XIAO Y. Thermal volume changes of saturated sand during loading-unloading-heating phase [J]. E3S Web of Conferences, 2020, 205: 08002. [百度学术] 

50

郭桢, 刘干斌, 尹铁锋, . 考虑温度的软黏土邓肯-张模型参数试验研究 [J]. 建筑结构, 2014, 44(3): 93-96, 83. [百度学术] 

GUO Z, LIU G B, YIN T F, et al. Test study on parameters of Duncan-Chang model for soft clay with consideration of temperature influence [J]. Building Structure, 2014, 44(3): 93-96, 83. (in Chinese) [百度学术] 

51

祁良, 郑荣跃, 陶海冰, . 考虑温度影响的宁波软土临界状态参数研究 [J]. 水文地质工程地质, 2015, 42(5): 79-83. [百度学术] 

QI L, ZHENG R Y, TAO H B, et al. A study of the critical state parameter of the Ningbo soft clay considering the effect of temperature [J]. Hydrogeology & Engineering Geology, 2015, 42(5): 79-83. (in Chinese) [百度学术] 

52

谢云, 陈正汉, 李刚. 考虑温度影响的重塑非饱和膨胀土非线性本构模型 [J]. 岩土力学, 2007, 28(9): 1937-1942. [百度学术] 

XIE Y, CHEN Z H, LI G. Thermo-nonlinear model for unsaturated expansive soils [J]. Rock and Soil Mechanics, 2007, 28(9): 1937-1942. (in Chinese) [百度学术] 

53

LIU H, LIU H L, XIAO Y, et al. Non-linear elastic model incorporating temperature effects [J]. Geotechnical Research, 2018, 5(1): 22-30. [百度学术] 

54

XIAO Y, LIU H, ZHANG W G, et al. Testing and modeling of rockfill materials: A review [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(3): 415-422. [百度学术] 

55

GITAU A N, GUMBE L O, BIAMAH E K. Influence of soil water on stress-strain behaviour of a compacting soil in semi-arid Kenya [J]. Soil and Tillage Research, 2006, 89(2): 144-154. [百度学术] 

56

王丽琴, 鹿忠刚, 邵生俊. 岩土体复合幂-指数非线性模型 [J]. 岩石力学与工程学报, 2017, 36(5): 1269-1278. [百度学术] 

WANG L Q, LU Z G, SHAO S J. A composite power exponential nonlinear model of rock and soil [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(5): 1269-1278. (in Chinese) [百度学术] 

57

王伟, 宋新江, 凌华, . 滨海相软土应力-应变曲线复合指数-双曲线模型 [J]. 岩土工程学报, 2010, 32(9): 1455-1459. [百度学术] 

WANG W, SONG X J, LING H, et al. Composite exponential-hyperbolic model for stress-strain curve of seashore soft soil [J]. Chinese Journal of Geotechnical Engineering, 2010, 32(9): 1455-1459. (in Chinese) [百度学术] 

58

UCHAIPICHAT A, KHALILI N. Experimental investigation of thermo-hydro-mechanical behaviour of an unsaturated silt [J]. Géotechnique, 2009, 59(4): 339-353. [百度学术] 

59

SOLEIMANBEIGI A, EDIL T B, BENSON C H. Effect of temperature on geotechnical properties of recycled asphalt shingle mixtures [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(2): 04014097. [百度学术] 

60

ROSCOE K H, BURLAND J B. On the yielding of soils [J]. Géotechnique, 1958, 8(1): 22-53. [百度学术] 

61

HUECKEL T, PELLEGRINI R, DEL OLMO C. A constitutive study of thermo-elasto-plasticity of deep carbonatic clays [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1998, 22(7): 549-574. [百度学术] 

62

刘红, 陈琴梅, 卢黎, . 考虑温度影响的非关联弹塑性饱和黏土本构模型 [J]. 土木与环境工程学报(中英文), 2020, 42(4): 53-59. [百度学术] 

LIU H, CHEN Q M, LU L, et al. Temperature-dependent non-associated elastic-plastic consititutive model for saturated clay [J]. Journal of Civil and Environmental Engineering, 2020, 42(4): 53-59. [百度学术] 

63

ABUEL-NAGA H M, BERGADO D T, BOUAZZA A, et al. Thermomechanical model for saturated clays [J]. Géotechnique, 2009, 59(3): 273-278. [百度学术] 

64

CUI Y J, SULTAN N, DELAGE P. A thermomechanical model for saturated clays [J]. Canadian Geotechnical Journal, 2000, 37(3): 607-620. [百度学术] 

65

HONG P Y, PEREIRA J M, CUI Y J, et al. A two-surface thermomechanical model for saturated clays [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(7): 1059-1080. [百度学术] 

66

殷宗泽. 一个土体的双屈服面应力-应变模型 [J]. 岩土工程学报, 1988, 10(4): 64-71. [百度学术] 

YIN Z Z. A double yield surface stress-strain model of soil [J]. Chinese Journal of Geotechnical Engineering, 1988, 10(4): 64-71. (in Chinese) [百度学术] 

67

TANG A M, CUI Y J. Modelling the thermomechanical volume change behaviour of compacted expansive clays [J]. Géotechnique, 2009, 59(3): 185-195. [百度学术] 

68

ALONSO E E, VAUNAT J, GENS A. Modelling the mechanical behaviour of expansive clays [J]. Engineering Geology, 1999, 54(1/2): 173-183. [百度学术] 

69

KRÖHN K P. New conceptual models for the resaturation of bentonite [J]. Applied Clay Science, 2003, 23: 25-33. [百度学术] 

70

GRAHAM J, TANAKA N, CRILLY T, et al. Modified Cam-Clay modelling of temperature effects in clays [J]. Canadian Geotechnical Journal, 2001, 38(3): 608-621. [百度学术] 

71

HAMIDI A, KHAZAEI C. A thermo-mechanical constitutive model for saturated clays [J]. International Journal of Geotechnical Engineering, 2010, 4(4): 445-459. [百度学术] 

72

HAMIDI A, TOURCHI S, KHAZAEI C. Thermomechanical constitutive model for saturated clays based on critical state theory [J]. International Journal of Geomechanics, 2015, 15(1): 04014038. [百度学术] 

73

WANG L Z, WANG K J, HONG Y. Modeling temperature-dependent behavior of soft clay [J]. Journal of Engineering Mechanics, 2016, 142(8): 04016054. [百度学术] 

74

ZHOU C, NG C W W. A thermomechanical model for saturated soil at small and large strains [J]. Canadian Geotechnical Journal, 2015, 52(8): 1101-1110. [百度学术] 

75

DAFALIAS Y F. Bounding surface plasticity. I: Mathematical foundation and hypoplasticity [J]. Journal of Engineering Mechanics, 1986, 112(9): 966-987. [百度学术] 

76

ANANDARAJAH A, DAFALIAS Y F. Bounding surface plasticity. Ⅲ: Application to anisotropic cohesive soils [J]. Journal of Engineering Mechanics, 1986, 112(12): 1292-1318. [百度学术] 

77

DAFALIAS Y F, HERRMANN L R. Bounding surface plasticity. Ⅱ: Application to isotropic cohesive soils [J]. Journal of Engineering Mechanics, 1986, 112(12): 1263-1291. [百度学术] 

78

ZHOU C, NG C W W. Simulating the cyclic behaviour of unsaturated soil at various temperatures using a bounding surface model [J]. Géotechnique, 2016, 66(4): 344-350. [百度学术] 

79

ZHOU C, FONG K Y, NG C W W. A new bounding surface model for thermal cyclic behaviour [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(16): 1656-1666. [百度学术] 

80

陈艳妮, 杨仲轩. 基于热力学理论的超固结黏土边界面模型 [J]. 岩土工程学报, 2017, 39(3): 547-553. [百度学术] 

CHEN Y N, YANG Z X. Thermodynamics-based bounding surface model for overconsolidated clay [J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 547-553. (in Chinese) [百度学术] 

81

姚仰平, 田雨, 刘林. 三维各向异性砂土UH模型 [J]. 工程力学, 2018, 35(3): 49-55. [百度学术] 

YAO Y P, TIAN Y, LIU L. Three-dimensional anisotropic UH model for sands [J]. Engineering Mechanics, 2018, 35(3): 49-55. (in Chinese) [百度学术] 

82

姚仰平, 刘林, 罗汀. 砂土的UH模型 [J]. 岩土工程学报, 2016, 38(12): 2147-2153. [百度学术] 

YAO Y P, LIU L, LUO T. UH model for sands [J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2147-2153. (in Chinese) [百度学术] 

83

孔令明, 姚仰平. 考虑时间效应的K0各向异性UH模型[J]. 岩土工程学报, 2015, 37(5): 812-820. [百度学术] 

KONG L M, YAO Y P. K0-anisotropic UH model considering time effects [J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 812-820. (in Chinese) [百度学术] 

84

姚仰平, 杨一帆, 牛雷. 考虑温度影响的UH模型 [J]. 中国科学: 技术科学, 2011, 41(2): 158-169. [百度学术] 

YAO Y P, YANG Y F, NIU L. UH model considering temperature effect [J]. Scientia Sinica (Technologica), 2011, 41(2): 158-169. (in Chinese) [百度学术] 

85

姚仰平, 侯伟, 周安楠. 基于Hvorslev面的超固结土本构模型 [J]. 中国科学(E辑: 技术科学), 2007, 37(11): 1417-1429. [百度学术] 

YAO Y P, HOU W, ZHOU A N. Constitutive model of overconsolidated soil based on Hvorslev surface [J]. Science in China (Series E: Technological Sciences), 2007, 37(11): 1417-1429. (in Chinese) [百度学术] 

86

姚仰平, 牛雷, 杨一帆, . 考虑温度影响的非饱和土本构模型 [J]. 岩土力学, 2011, 32(10): 2881-2888. [百度学术] 

YAO Y P, NIU L, YANG Y F, et al. Constitutive model for unsaturated clays considering temperature effects [J]. Rock and Soil Mechanics, 2011, 32(10): 2881-2888. (in Chinese) [百度学术] 

87

姚仰平, 万征, 杨一帆, . 饱和黏土不排水剪切的热破坏 [J]. 岩土力学, 2011, 32(9): 2561-2569. [百度学术] 

YAO Y P, WAN Z, YANG Y F, et al. Thermal failure for saturated clay under undrained condition [J]. Rock and Soil Mechanics, 2011, 32(9): 2561-2569. (in Chinese) [百度学术] 

88

孔令明, 姚仰平. 超固结土热黏弹塑性本构关系 [J]. 岩土力学, 2015, 36(Sup 1): 1-8. [百度学术] 

KONG L M, YAO Y P. Thermo-visco-elastoplastic constitutive relation for overconsolidated clay [J]. Rock and Soil Mechanics, 2015, 36(Sup 1): 1-8. (in Chinese) [百度学术] 

89

YAO Y P, KONG L M, ZHOU A N, et al. Time-dependent unified hardening model: Three-dimensional elastoviscoplastic constitutive model for clays [J]. Journal of Engineering Mechanics, 2015, 141(6): 04014162. [百度学术] 

90

YAO Y P, HOU W, ZHOU A N. UH model: Three-dimensional unified hardening model for overconsolidated clays [J]. Géotechnique, 2009, 59(5): 451-469. [百度学术] 

91

ZHANG Z C, CHENG X H. Simulation of nonisothermal consolidation of saturated soils based on a thermodynamic model [J]. The Scientific World Journal, 2013, 2013: 192163. [百度学术] 

92

赵成刚, 张雪东, 郭璇. 土的本构方程与热力学 [J]. 力学进展, 2006, 36(4): 611-618. [百度学术] 

ZHAO C G, ZHANG X D, GUO X. Constitutive equations of soils and thermodynamics [J]. Advances in Mechanics, 2006, 36(4): 611-618. (in Chinese) [百度学术] 

93

李志敏. 基于能量耗散理论冻土本构模型的研究 [J]. 低温建筑技术, 2009, 31(8): 87-89. [百度学术] 

LI Z M. Study on elastic-plastic damage constitutive model of frozen soil based on energy dissipation theory [J]. Low Temperature Architecture Technology, 2009, 31(8): 87-89. (in Chinese) [百度学术] 

94

鲁晓刚, 王卓, CUI YuWen, . 计算热力学、计算动力学与材料设计 [J]. 科学通报, 2013, 58(35): 3656-3664. [百度学术] 

LU X G, WANG Z, CUI Y W, et al. Computational thermodynamics, computational dynamics and material design [J]. Chinese Science Bulletin, 2013, 58(35): 3656-3664. (in Chinese) [百度学术] 

95

李亮, 李彦. 基于热力学原理的混凝土热-力耦合本构模型 [J]. 北京工业大学学报, 2016, 42(4): 554-560. [百度学术] 

LI L, LI Y. Thermo-mechanical coupling constitutive model of concrete based on thermodynamics [J]. Journal of Beijing University of Technology, 2016, 42(4): 554-560. (in Chinese) [百度学术] 

96

何敏, 冯孝鹏, 李宁, . 饱和正冻土水热力耦合模型的改进 [J]. 岩土工程学报, 2018, 40(7): 1212-1220. [百度学术] 

HE M, FENG X P, LI N, et al. Improvement of coupled thermo-hydro-mechanical model for saturated freezing soil [J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1212-1220. (in Chinese) [百度学术] 

97

张志超, 程晓辉. 饱和土非等温固结和不排水剪切的热力学本构模型 [J]. 岩土工程学报, 2013, 35(7): 1297-1306. [百度学术] 

ZHANG Z C, CHENG X H. Thermodynamic constitutive model for non-isothermal consolidation and undrained shear behaviors of saturated soils [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(7): 1297-1306. (in Chinese) [百度学术] 

98

ZHANG Z C, CHENG X H. A thermo-mechanical coupled constitutive model for clay based on extended granular solid hydrodynamics [J]. Computers and Geotechnics, 2016, 80: 373-382. [百度学术] 

99

BAI B, YANG G C, LI T, et al. A thermodynamic constitutive model with temperature effect based on particle rearrangement for geomaterials [J]. Mechanics of Materials, 2019, 139: 103180. [百度学术] 

100

YANG G C, BAI B. A thermodynamic model to simulate the thermo-mechanical behavior of fine-grained gassy soil [J]. Bulletin of Engineering Geology and the Environment, 2020, 79(5): 2325-2339. [百度学术] 

101

WHEELER S J. A conceptual model for soils containing large gas bubbles [J]. Géotechnique, 1988, 38(3): 389-397. [百度学术] 

102

YANG G C, LIU Y, CHEN P P. Thermodynamic modeling of stress-strain behavior of saturated sand considering temperature effect [J]. AIP Advances, 2021, 11(12): 125206. [百度学术] 

103

GOLCHIN A, VARDON P J, HICKS M A. A thermo-mechanical constitutive model for fine-grained soils based on thermodynamics [J]. International Journal of Engineering Science, 2022, 174: 103579. [百度学术] 

104

KURZ D, SHARMA J, ALFARO M, et al. Semi-empirical elastic-thermoviscoplastic model for clay [J]. Canadian Geotechnical Journal, 2016, 53(10): 1583-1599. [百度学术] 

105

LALOUI L, CEKEREVAC C. Numerical simulation of the non-isothermal mechanical behaviour of soils [J]. Computers and Geotechnics, 2008, 35(5): 729-745. [百度学术] 

106

LALOUI L, CEKEREVAC C. Non-isothermal plasticity model for cyclic behaviour of soils [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(5): 437-460. [百度学术] 

107

LIU E L, XING H L. A double hardening thermo-mechanical constitutive model for overconsolidated clays [J]. Acta Geotechnica, 2009, 4(1): 1-6. [百度学术] 

108

沈珠江. 粘土的双硬化模型 [J]. 岩土力学, 1995, 16(1): 1-8. [百度学术] 

SHEN Z J. A double hardening model for clays [J]. Rock and Soil Mechanics, 1995, 16(1): 1-8. (in Chinese) [百度学术] 

109

刘祖典. 岩土材料的简易双硬化模型 [J]. 水资源与水工程学报, 1993, 4(2): 88-96. [百度学术] 

LIU Z D. Simple double hardening model of geotechnical materials [J]. Journal of Water Resources and Water Engineering, 1993, 4(2): 88-96. (in Chinese) [百度学术] 

110

姚仰平, 谢定义, 俞茂宏. 复杂应力下砂土的广义双剪应力破坏准则及双硬化本构模型 [J]. 西安冶金建筑学院学报, 1994, 26(4): 392-397. [百度学术] 

YAO Y P, XIE D Y, YU M H. Generalized twin shear stress failure criterion and double-hardening constitutivc model of sand under the complex stress state [J]. Journal of Xi’an Institutte of Metallurgy and Constructural Engineering, 1994, 26(4): 392-397. (in Chinese) [百度学术] 

111

MA Q J, NG C W W, MAŠÍN D, et al. An approach for modelling volume change of fine-grained soil subjected to thermal cycles [J]. Canadian Geotechnical Journal, 2017, 54(6): 896-901. [百度学术] 

112

COLLINS I F, BOULBIBANE M. Geomechanical analysis of unbound pavements based on shakedown theory [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(1): 50-59. [百度学术] 

113

HABIBALLAH T, CHAZALLON C. An elastoplastic model based on the shakedown concept for flexible pavements unbound granular materials [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2005, 29(6): 577-596. [百度学术] 

114

NOWAMOOZ H, LI K, CHAZALLON C. Shakedown modeling of unsaturated expansive soils subjected to wetting and drying cycles [J]. E3S Web of Conferences, 2016, 9: 08007. [百度学术] 

115

MASIN D. A hypoplastic constitutive model for clays [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2005, 29(4): 311-336. [百度学术] 

116

MAŠÍN D, KHALILI N. A thermo-mechanical model for variably saturated soils based on hypoplasticity [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36(12): 1461-1485. [百度学术] 

117

ZHANG S, LENG W M, ZHANG F, et al. A simple thermo-elastoplastic model for geomaterials [J]. International Journal of Plasticity, 2012, 34: 93-113. [百度学术] 

118

张升, 贺佐跃, 滕继东, . 考虑结构性的软岩热弹塑性本构模型研究 [J]. 岩石力学与工程学报, 2017, 36(3): 571-578. [百度学术] 

ZHANG S, HE Z Y, TENG J D, et al. A thermo-elasto-plastic model for soft rocks considering structure [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(3): 571-578. (in Chinese) [百度学术] 

119

ZHANG S, XU S, TENG J D, et al. Effect of temperature on the time-dependent behavior of geomaterials [J]. Comptes Rendus Mécanique, 2016, 344(8): 603-611. [百度学术] 

120

LALOUI L, LEROUEIL S, CHALINDAR S. Modelling the combined effect of strain rate and temperature on one-dimensional compression of soils [J]. Canadian Geotechnical Journal, 2008, 45(12): 1765-1777. [百度学术] 

121

ROSCOE K H, SCHOFIELD A N, THURAIRAJAH A. Yielding of clays in states wetter than critical [J]. Géotechnique, 1963, 13(3): 211-240. [百度学术] 

122

陆浩杰, 孔纲强, 刘汉龙, . 黏土热-力学特性对能量桩力学特性的影响 [J]. 岩土工程学报, 2022, 44(1): 53-61. [百度学术] 

LU H J, KONG G Q, LIU H L, et al. Influences of thermo-mechanical properties of clay on mechanical responses of energy piles [J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 53-61. (in Chinese) [百度学术] 

123

冯兴, 姚仰平, 李汝宁, . 考虑温度UH模型的有限元应用 [J]. 岩土工程学报, 2015, 37(Sup 2): 181-185. [百度学术] 

FENG X, YAO Y P, LI R N, et al. Application of UH model considering temperature to finite element method [J]. Chinese Journal of Geotechnical Engineering, 2015, 37(Sup 2): 181-185. (in Chinese) [百度学术] 

124

王浩, 张志超, 程晓辉. 基于热力学理论的水泥石热-力耦合本构模型和有限元分析 [J]. 岩石力学与工程学报, 2018, 37(1): 67-76. [百度学术] 

WANG H, ZHANG Z C, CHENG X H. A thermal-mechanical constitutive model for cement rock based on thermodynamics and its finite element application [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 67-76. (in Chinese) [百度学术]