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Theorems of the alternative play an important role in vector optimization theory. and it becomes
an essential tool to study optimality conditions. Lagrange multipliers, duality. ect. Recently, since
vector optimization of set-valued maps has received an increasing amount of attention, it is necessary
to study the theorems of the alternative for set-valued maps under the assumption of generalized con-
vexity. In Ref. 2, Li established a theorem of the alternative for subconvexlike set-valued maps in or-
dered linear topological space.

In this paper. we establish some theorems of the alternative for nearly convexlike and nearly sub-
convexlike set-valued maps by using the separation theorem of convex set in linear topological space.
The proof given here is substantially different from that given by llles and Kassay when vector-valued
maps are considered. Our results are also the foundation for deeply discussing vector optimization the-

ory for set-valued maps.

1 Notations and Preliminaries

Let D be an arbitrarily chosen nomempty abstract set. Let ¥ be a linear topological space. The
convex cone Y, with apex at the origin in Y is called a positive cone of ¥. Suppose that the positive
cone ¥4 is not equal to ¥: Let A be a nonempty subset of Y. We denote by #2r A the interior of A.

We denote by Y* the dual of Y. Setting Yi={y"€Y"*|{y, " )220, ¥ y€EY,}. where {y,
3 >=y"{y);¥} is said to be the dual cone of the positive cone Y.

Suppose that F;D—27 is a set-valued map form D to Y, where 2¥ denotes the power set of Y.
Let F(D)=11EJDF(:':) v AFCe) v Y= {{yay ) [yEF(x) ) (F(D)yy* )=zlEJD€F(x).y' ¥. For z€
D, y" €Y " ,write {F{x),y* y=0,iff {y,y" )220,¥ yCF(x); (F(D),y"=20,iff {F(z),y+ )=
0.¥ x€D;

We denote by R set of real numbers. For ACR, 6E R, write AZ=h, iff a=2b, ¥ a€ A.

+ Received date;2000—01—03
Biography : Huang Yong-wet(1977— ), Male, Bron in Changle,Fupian, Master candidare, Major in oprimization theory end appli-
cations.



http://www.cqvip.com

62 T AR R AKFFR F 22K

Definition 1.1 The subset M of Y is called nearly convex, if 3 a€ (0, 1), ¥ yy, y:€EM, such
that ay +{1—alv, € M.

Definition 1. 2 The set-valued map f:D—2% is called nearly convexlike, if 3 €140, 1), ¥ ;.
€D, 3 2€ D, such that

afiz,) + 11 —a)fix) C fez)+ Y,
Lemma 1.1 (See Ref. 1) If MCY is a nearly convex set, then ¢ M is a convex set.
Lemma 1. 2tSee Ref. 2) Let Y. CY be a positive cone, and let it Y be nonempty. Suppose
that Y1 is the dunt cone of Y. H 33 €Y 5, 3 =0p v mC it Yy, then 4wows )0,

2 Theorems of the Alternative

In the following, we consider two linear topological spaces Y, and Y. Suppose that Y.+ is the
positive cone of Y., i=1,2; Suppose that ét Y, is nonempty. However, the interior of Y+ is not re-
quired to be nonempty. Let Y7 is the dual cone of Y, i=1,2.

Let f:D—=2",g.D—+2". Put Y=Y, XY;, Y=Y XY .F=1f, g):D+2". Obviously. ¥*
=Y XY, , and one can easily verify that Y=Y X Y.

Lemma 2.1 I v =(3, 3 €Y, ™0, m={¥a, yu) € Unt Y11 )XYy, then (),
vy >0,

Proof Since yn €t Y4, it follows by Lemma 1, 2 that ¢xyo,ye) >0, By definition of ¥z, ,
we get {yoz+yoz)220. So,

, (orwe » = {¥usya? + (Pozediz? > 0
The proof is complete.

Lemma 2.2 & (FID)+Y =@, and only if ittt FID)+ tint ¥ 23 XY, )%= .

Proof The proof is similar to the proof of Lemma 2. 2 of Ref. 1 when F is a vector-valued map.

Lemma 2.3 Let M=F{D)+ tint Y14 3 X Yop. If Fis nearly convexlike, then M is nearly con-
vex. '

Proof Let c;.co € M. Then,there exist 7, EM, v Et Y.ty E Y24 ,i=1,2 satisiying

6 € Flay) + Iogeveds 6 € FQx) 4 {vars yu)
Hence.ac,+{1—a); EaFtlx )+t 1—a) Flx ) +alyy,yiz ) Hil—ad v vt ¥ o€ L0, 15,
Since (it Y143 X Y,y is convex, then alyy;,vie) + 01 —a) (321,922 ) € (inr Y140 XY, Therefore,
e, + (1 —ade; € aF i) + (1 —a}F () + Gt Yiu) XY ¥ ag L0, 1) L1
Due to the assumption that F is nearly convexlike, consequently 3 a,€ (0,1}, ¥V x,20,€ D, 3 2z€
D, such that
@ Flaxy + 11 — e F{x) CFlz) + Y, (2)
Setting e=ayin (1. we get
e + (1~ ade; € apFlayy + (1 — app Flagy + Ut Vi X Yoy £3)
Hence, it follows by (23.(3) that ey +11—agye: € Flzd) + Y+ tint Y4 ) X Yoy
Because of Yy +im Yy Tint Yy4r we obtain Y+ U Vi ) X Yo Clint Vi ) XY 4. Soo
g, + 11l —a)e © Fiz) + @t Y ) X Yo TR+ im Y0 X Yy
The proof of near convexity of M is complete.

Lemma 2. 4(See Ref. 1) Let M=F(D)}+ tint Y14+ ) XY:4. Suppose that M is nearly convex,

and suppose that the interior of M is nonempty. I 3 y" =1y, 27 YEY! XY7 3" FOy~ »such that
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faay b= (u v Y Faguys 22300 ¥V u€ ot M. Then
{u.v' =0 ¥Yul M

In the following, we consider the follnwing generalized inequality-equality systems,

System 1 3 xaE€ED,s. b -Fla) Vit Y1+ F S -glz) Y26 7

System 2 3 3y =0y w )EY Y, vy =y st

(Sl + gy, > =20, V€D (4)

For the above two systems. we have the following alternative theorem which generalized Theo-
rem 3.1 of Ref. 1. the Farkas-Minkowski type theorem for vector-valued maps.

Theorem 2. 1(Alternative Theorem) Suppose that the set-valued map F=(f.g): D—2' is
nearly convexlike, and suppose that the interior of F{D) ¥, is nonempty.

1) If System 2 has a solution (yy ,y; ) with ¥ #0r; » then System 1 has no solution;

23 If System 1 has no solution, then System 2 has a solution (yi .7 ).

Proof

1) Suppose that System 2 bas a solution Cy ,y; ) with y' 7Oy, If System 1 has a solution z,
€D, there exist pE flxe), g€ glay) - such that - int Y14, -g€Y,4. Thus, by Lemma 2.1, we
get {p.y )+ igs¥ »<<O. This is a contradiction to (4).

2) Since F is nearly convexlike, M=F(D)+ tént ¥, ) XY, is nearly convex, Therefore, it M
is convex. By the assumption that in¢ (FLD)~+Y ) is nonempty. we get int M7= 25,

Since System 1 has no solution, Qy=1(0y »0y,} & M. Hence. by using the separation theorem of
convex sets of linear topological spaces (See Ref 3), there exists a hyperplane H properly separating
{Ov) and int M.ice.sd 3" ={y sy YEY XY,y " #0Oy+ ,a€ R,such that

{u,3" ' 2a=20, YuEimt M {5)
where the hyperplane H={y&¥ |{y.y" ) =al.

Now, we show that

{a,y*» >0, Yu€imtM (6
If a0, it follows by (5) that (6} holds. Assume that a=0, Also by {(5), we obtain
{a,y" 2220, YV u€int M, D
Suppose that (§) does not boid. Then, by (77, there exists 2, Efnt M such that
(e, ¥ ) =0 (8)

Because of u,E int M, there exists a neighborhood & of the origin Oy such that we+ N € éwr M. Due
to the fact that MV is absorbent, we may select a positive number & which is sufficiently smalil such that
—evC N, ¥ vCint M. Therefore, wy—evCint M. By (7), we get {uwp—ev, v' 2220, i, (ues»
y Y=lev,y" ). By (8), we obtain {v,y* <0, Since vEint M, by (7}, we bave {v.y" } 20,
Therefore, {(u,y* =0, ¥ v& iz M. This implies that the hyperplane H cannot properly separate
{Oy} and int M, which contradicts the separation theorem. Thus, the proof that (8§} holds is com-
plete,

By Lemma 2. 4, we obrain

{way*' ) 220, YueE M £9)

Next, we show that (v ,y; YEY . X Y;,. In faet, assume that y &Y ,. There exists y,E Y4
such that (y,, ' )<<0. Then, A{y, 3 ¥Y=={Ay, 3 Y<<0, ¥V A>>0. By (9}, for any x€ D, 3 Emr
Yier ' €EYops we have f={p+ 3 3" 2+ igt+ 3y, 1220,Y 2E f{z),gEglx). Since Ay €
Y1+, hence Ay, 4+ €t Y1, Also by (8), we get {p+An+3' 1,9 ) +igty 0y 220 4e. 5
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Ay 320, YAz (1)
However. ¢10) does not hold when A>— g2/ {y .y }.since — &3/ 4y, 3" 1220, This contradiction il-

lustrates that v €Y7,
The proof of y. € Y4, is similar to the proof of ¥ € Yy. Therefore. 3 ¥ =3 3 )EY L X
Yooy =0 st luvy 1 20,YucM.ore.
(Fiz) +4,3" )20, Y€ D, t € Unt Vi) X Yauo
Take 4, € (int Y14 ) % Yy and A4,>>0 such that A,—0 for n—~-+c0; then.letting n—>-—20. we have
(Flx), vy = (flxdy. v F gl vy =20 VYx€D
i.e. s System 2 has a solution {vi +y; ). The proof is thus complete.
Definition 2.1 The set-valued map f:D—2" is called nearly subconvexlike, if 3 u€irr Yy,
Ja€ (0, 1), ¥ xpy0€D, ¥ &0, 3 2ED, such that
e+ afla) + (1 —a)f(z) C flz) + 5y
Lemma 2.5 Let M=F(D)+int Y.,. If the set-valued map f is nearly subconvexlike, then M
is nearly convex.
Theorem 2. 2 Suppose that the set-valued map f:D—=2" is nearly subconvexlike, and suppose
that the interior of F(D)+Y 1 is nonempty. Then, exactly one of the following statements is true;
1 3 €Dt —flxy)Now Y2z
2) F M EY Ly FEOv st (D) )20

References:

[1] Tilles.T., and Kassay. G. Theorem of t-he Alternative and Optimality Conditions for Convexlike and General
Convexlike Programming[]]. Journal of Optimization Theory and Applications.1999,101(2);243~257

[2] Li, Zemin. A Theorem of the Alternative and [ts Application to the OUptimization of Set-valued Maps(J]. Jour-
nal of Optimization Theory and Applications.1999,100(2);365~375

[3] Tel.J.¥. Convex Analysis: An Intreductory Text{M]. New York: John Wiley and Sones, 1884

[4] Huamg: Y. W. A Theorem of the Alternative and Its Application to Scalarization Peoblems with Set-Valued
Maps[A]. In Yu. Y. C., and Wang, S. Y. (eds. ) Decision Making Science Theory. Method. and Applica-
tions. Workshop in Chinese Decision Making Science and Multiobjectives Programming (C2). Hongkong : Joyo
Publication Limited. 2000

(0)  EME RS TS — 'IEEEE
Ll -6W ©1&9. Y
Fagl, FFR', & aE.?z 1713

(LEFRSxE STANSHRFR ER 4000452 ERER LS HEER, X 100045)

WE. A it Em T AT LD A RASEERMTHEF LT,
KR AN Bkt RO, GLRRE K db T



http://www.cqvip.com

