薄壁梁的单元柔度矩阵及其应用.

李开禧, 赵广坡, 温伏明 (重庆大学 土木工程学院, 重庆 400045)

摘要:结合示例介绍了用动态坐标法直接计算薄壁构件的空间变形,并将其用到弯心不共线的 薄壁梁的计算分析中,给出了相应的单元柔度矩阵和力法求解过程。从而突破了弯心不共线 薄壁杆件体系计算困难的问题,显示了这种计算方法的优越性。

关键词:薄壁构件; 弯心不共线; 动态坐标法; 单元柔度矩阵 中图分类号:TU322 文献标识码:A 文章编号:1006-7329(2004)04-0018-07

The Element Flexibility Matrix of Thin – walled Beam and Its Application

Li Kai - xi, ZHAO Guang - po, WEN Fu - ming (College of Civil Engineering, Chongqing University, Chongqing 400045, P.R.China)

Abstract: In this paper, the calculation of the space deformation of thin – walled element by "dynamic coordinate method" is explained in detail through an example. The thin – walled element with different shear – centers on one section is analyzed and calculated by this method as well, then, the element flexibility matrix is presented. Some difficulties in calculation of thin – walled structures with "plane bending theory" and "constrict twist theory" are overcome, showing the advantages of this method.

Keywords: thin - walled element; non - superposition shear center; dynamic coordinate method; element flexibility matrix

薄壁构件的受力特性与实体构件是不同的,其横截面上的翘曲变形不能再视为相对次要因素而略 去不计。正是由于这样的受力特点,使得由薄壁杆件组成的薄壁结构受力分析比较复杂。伏拉索夫等 学者提出的约束扭转理论用双力矩表达引起翘曲变形的力因素,巧妙地把翘曲变形的计算和平面变形 的计算衔接为整体,给出了实用计算方法。但是由于该理论是建立在新假定的基础上,自身还存在一些 原则性的缺陷,所以它只有在一定的条件下才有效。具体来说,以该理论为基础,用传统方法求解薄壁 结构时,有一定的局限性,综合叙述如下:

1) 对于简单的超静定薄壁连续梁,要求:

- (1)各跨薄壁杆件的截面形式相同;
- (2)相邻跨薄壁杆件截面的弯曲中心轴重合。

2) 由薄壁杆件组成的平面刚架(连续梁也可看作是平面刚架的一个特例),要符合下列条件:

(1)通过杆截面形心的纵轴及所有横截面的主轴之一位于同一个平面内。

(2)通过所有杆截面的弯曲中心轴在同一平面内。

(3) 在刚架的节点,所有交汇于此节点的杆端截面的翘曲 β相同(β为杆件横截面绕截面弯曲中心的扭角)。

(4) 刚架的支撑设置能保证作用于刚架平面内的荷载所产生的一切内力和变形平行于刚架平面。

3) 由薄壁杆件组成的薄壁空间刚架,还常需要满足:

(1)为了保证相邻杆件在节点处的平衡条件和变形协调条件,所有相邻杆件的弯曲中心轴在节点处

^{*} 收稿日期:2004-04-20 作者简介:李开禧(1935-),男,四川崇庆人,教授,博士导师,主要从事钢结构稳定和薄壁梁理论研究。

(2)为了保证相邻杆件在节点处的剪力、轴力、扭矩之间传力的正确性,必须保证相邻杆件的形心轴 必须汇交于一点。 (3)通过分析可知,为了保证节点处的剪力、轴力、扭矩之间传力的正确性,同一杆件的形心轴和弯

在节点处汇交于一点。

这些局限性造成了薄壁结构的内力分析十分艰难,其根本原因在于传统方法是建立在两个相互独 立的理论基础上,一个是以实体构件为对象的"平面弯曲理论",一个是以薄壁构件为对象的"约束扭转 曲中心轴必须重合。 理论",它们各成体系,互不相容。再加上后一理论自身不够完善,因而使这两个理论之间不具备以截面 为对象的内力叠加功能,从而在推理中不能进行内力消元,导不出完整统一解,这就大大增加了节点区 静力平衡条件和变形协调条件的复杂性和困难性。同时,这些局限性对薄壁杆件结构的内力分析影响 较大,矛盾也十分突出,是不能忽略的。因此,为了获得问题的解答,就必须对传统的理论和方法进行改 造。文[1]提出的翘曲理论给出了很好的解决方法,由于该理论可以直接计算空间变形,不再分解叠加, 因而能很方便的导出薄壁构件的单元柔度矩阵,使相邻单元的弯心不共线如何处理的难题迎刃而解。

1

翘曲理论认为,对薄壁杆件进行一阶分析时,应将对内力和变形影响较小的自由扭转刚度略去,而 将其放到二阶分析中去考虑。文献[1]已提出用拉弯比拟模型来计算它的效应。同时翘曲理论还提出了 单肢板假定,把薄壁杆件看成是由若干窄矩形截面杆件组成的杆件体系,是彼此脊线相连、在节点变形 协调的框架,并将截面上的总弯矩、总剪力及双力矩分解为作用在各单肢板中线上的弯矩矢量和剪力矢 量,这就为复杂支座问题、错位支座问题、弯心不共线问题的计算提供了极大的方便和根本的解决方法。 这样再借助翘曲理论中弯矩矢量和转角向径两大工具,利用动态坐标法可非常方便地迅速求出外荷载

作用下杆件指定截面上的应力和变形。下面结合一个简单的示例来说明一下该方法及其应用。 [例1] 图1(a)所示一三板型薄壁截面,截面几何尺寸如图所示,在截面一单肢板上作用一弯矩矢量 M

衡,对本例而言,即每一单肢板中线上内、外弯矩矢量的平衡和所选的截面上的简化中心处的内、外轴力

(1)

上脚标"i"、"e"分别表示内力效应和外力效应,P和N分别代表外力与内力合力。根据这组平衡 平衡,因此可得平衡方程

(1) 选截面上 D 点为简化中心, 按单肢板内静力平衡条件, 将外力系从 A 点开始向 D 点简化得 方程,我们按照下列步骤来计算:

(2) 假定截面正应力分布图如图 1(b) 所示, 对应于外力系简化路径将内力系简化为 $M_1 = (\sigma_0/2) \times 20 \times (2/3) \times 20 - (\sigma_1/2) \times 20 \times (1/3) \times 20 = 200(2\sigma_0 - \sigma_1)/3$ $M_2 = 500 \times (\sigma_0 - \sigma_1) + 1\ 250(\sigma_2 - 2\sigma_1)/3$

同理

$$M_3 = 300 \times (\sigma_0 - \sigma_1) + 750 \times (\sigma_2 - \sigma_1) + 150(2\sigma_2 - \sigma_3)$$
$$N = 10(\sigma_0 - \sigma_1) + 25(\sigma_2 - \sigma_1) + 15(\sigma_2 - \sigma_3)$$

(3)由式(1)可建立内外纵向力系平衡方程,将 M1、M2、M3 和 N 代入平衡方程整理后求得

 $\sigma_0 = 1$ $\sigma_1 = 2$ $\sigma_2 = 5.2$ $\sigma_3 = 9.866667$

(4)做出实际正应力分布图如图 1(c)所示。根据翘曲理论,知道该正应力分布图同时也是截面纵 向翘曲位移图。

下面求单位纵向翘曲位移图及翘曲惯性矩。从上面的解答后退一步,只利用已知三肢板中线上的中性点联线 $O_1 - O_2, O_2 - O_3$ 的方向,过节点 B、C 分别做 $O_1 - O_2, O_2 - O_3$ 的平行线,其交点即为转动中心 K。在刚周边假定前提下,按刚体的运动合成法则,翘曲理论把横截面的正投影绕弯心 S 的转动以及在自身平面内的平动合成为绕转动中心 K 的转动,即把截面变形量消元为绕 K 点扭角 β 的一维变量,这为翘曲理论能够直接计算空间变形奠定了基础。已知 K 点之后,就知道各板中线的转角向径 r_1, r_2, r_3 ,由此能作出单位纵向翘曲位移图,并可进一步算出翘曲惯性矩 I_{odt} 。三板型截面中,转角矢量与转角向径对应相等时的翘曲变形称为单位翘曲变形,即 $\Delta\theta/H = 1$,其中 $\Delta\theta$ 为相邻两节点转角矢量的增量,H 为两节点间的距离,即腹板②的宽度。本例中,H = 50, $\Delta\theta = 19$.566 667/30。令 $\eta\Delta\theta/H = 1$,即将上面求得的截面纵向翘曲位移图(截面正应力图)放大 $\eta = 76.660$ 988 倍以后得到截面单位纵向翘曲位移图,如图 2(a)所示,图中 $r_{ij}表示在 M_j$ 作用下第 i 肢板的转角向径。由此求得 $I_{odt} = M_1r_{11}\eta = 6 434 299$ cm⁶。

图 2 截面各单肢板弯矩矢量单独作用下的单位纵向翘曲位移图

对于弯矩矢量分别作用在其它单肢的情况,可以按照同样的原理和步骤求解,不再赘述,而直接给 出计算结果如图 2(b)、(c)所示。当每一单肢板都作用有弯矩矢量的时候,根据叠加原理,只要将弯矩 矢量分别作用时的求解结果叠加即可。需要进一步说明的是,已知单位纵向翘曲位移图和 *I*_{wk}之后,如 果再已知该截面上承受的双力矩 *B_k*,就可由正应力的计算公式

$$\sigma = B_k \omega_k / I_{\omega k} \qquad (B_k = M_i r_{ii}) \tag{2}$$

进行计算。而平面弯曲变形、绕弯心 S 转动的翘曲变形时的正应力计算分别是转动中心 K 在无穷远 处、与弯心 S 重合的特例,即式(2)是计算任意翘曲变形时正应力的通用公式。更为重要的是,由此导出 扭角变形的公式

$$\beta'' = B_k / E I_{\omega k} \tag{3}$$

当沿杆长单调加载时,各截面转动中心 K 点位置相同,即杆件绕 K - K 纵轴线转动。而平面弯曲变形 挠曲线的计算、绕弯心 S 转动的翘曲变形的扭角函数的确定则分别是转轴 K - K 在无穷远处、与弯心 S 轴重合的特例。

从上文的阐述中,不难看出空间变形计算所依据的控制方程和平面弯曲变形计算所依据的控制方 程有着数学构造上的一致性和力学意义上的共性,因此,只要把相应的几何量和力学量做代换,空间变 形的计算方法即可直接借用平面变形的计算方法。也正是因为以上方法把空间的纵、横变形统一消元 为一维问题,又能灵活的适应各种加载形式,故把这种直接计算构件空间变形的方法称为动态坐标法。 另外,翘曲理论还推导出

$$\mathrm{d}\theta_i/\mathrm{d}z = r_{ii}\beta'' \tag{4}$$

即各单肢板的弯曲曲率等于其转角向径与截面转角二阶导数的乘积, θ_i 为某一单肢板的转角, z 沿杆长 方向。由平面弯曲理论中挠度、转角的关系, 有

$$d^2 \delta_i / dz^2 = r_{ii} \beta' \tag{5}$$

 δ_i 为某一单肢板在中线方向的侧移。

根据上文所述的基本原理,求解简单超静定薄壁杆件梁的弯心不共线问题时,可以首先在变截面处 将梁断开,在外荷载作用下,该处梁两边横截面每一单肢板上均作用有弯矩矢量和剪力矢量,并产生相 应的转角和侧移,由(2)~(5)式知道位移和力二者之间存在着确定的关系式。因此对断面处每一边横 截面均可建立如下形式的矩阵方程组:

$$\{\Delta\} = [f]\{F\} \tag{6}$$

其中{Δ}为广义位移向量,{F}为广义力向量,[*f*]为单元柔度矩阵。同时,在变截面处以各单肢板的剪 力矢量、弯矩矢量与外力系的平衡条件,它们的转角和挠度变形协调条件,可求出变截面处两边截面的 剪力矢量、弯矩矢量。此时,该问题就转换为两段悬臂梁的计算求解问题。下面结合具体例子来说明。

3 示例

[例2] 图3所示为一两端固定变截面薄壁梁,两端截面尺寸如图4所示,各单肢板的厚度 t 均为1 cm, 在变截面处的一单肢上作用有集中力 P = 10 kN,试计算出两固端截面 3 – 3、4 – 4 的正应力分布图。

图 3 变截面梁受力图及剖切面位置示意图

解:(1)首先将梁从变截面处断开,分别计算出各单肢板单独弯矩矢量作用下变截面处两边截面的 单位纵向翘曲位移图和各转角向径以及在相应荷载作用下截面的翘曲惯矩 I_{wk},1-1 截面在前文已经 给出(如图 2),2-2 截面见图 5。

(2)建立单元柔度矩阵

由(2)~(4)式以及(6)式可建立截面各单肢板转角的导数(即弯曲曲率)与各单肢板弯矩矢量的矩 阵方程组

$$\{\theta'_i\} = [f]\{M_i\} \tag{7}$$

其中

$$[f] = \frac{1}{E} \begin{bmatrix} \frac{r_{11}}{I_{\omega 1}} r_{11} & \frac{r_{22}}{I_{\omega 2}} r_{12} & \frac{r_{33}}{I_{\omega 3}} r_{13} \\ \frac{r_{11}}{I_{\omega 1}} r_{21} & \frac{r_{22}}{I_{\omega 2}} r_{22} & \frac{r_{33}}{I_{\omega 3}} r_{23} \\ \frac{r_{11}}{I_{\omega 1}} r_{31} & \frac{r_{22}}{I_{\omega 2}} r_{32} & \frac{r_{33}}{I_{\omega 3}} r_{33} \end{bmatrix}$$
(8)

即薄壁杆空间变形的单元柔度矩阵,它是对称矩阵。

梁左右两端截面各单肢板的编号如图 4 所示,把相关数据代入上式中得到左、右端截面空间变形单 元柔度矩阵分别为(长度单位:cm)

$$[f^{1}] = \frac{1}{10^{3}E} \begin{bmatrix} 0.230\ 377 & 0.066\ 055\ 0 & 0.068\ 807\ 3\\ 0.066\ 055\ 0 & 0.055\ 045\ 7 & 0.107\ 339\\ 0.068\ 807\ 3 & 0.107\ 339 & 0.674\ 312 \end{bmatrix}$$

 $[f^{2}] = \frac{1}{10^{3}E} \begin{bmatrix} 0.674\ 312 & 0.107\ 339 & 0.068\ 807\ 3 \\ 0.107\ 339 & 0.055\ 045\ 7 & 0.066\ 055\ 0 \\ 0.068\ 807\ 3 & 0.066\ 055\ 0 & 0.230\ 377 \end{bmatrix}$

(3)列平衡方程

按图 4 规定的正值方向,根据变截面处各单肢板脱离体内、外力系的平衡条件有

$$M_{1}^{1} = M_{1}^{2} M_{2}^{1} = M_{2}^{2} M_{3}^{1} = M_{3}^{2}$$

$$Q_{1}^{1} + Q_{1}^{2} + P = 0 Q_{2}^{1} + Q_{2}^{2} = 0 Q_{3}^{1} + Q_{3}^{2} = 0 (9)$$

(4)建立各单肢板的位移和转角方程

分别计算断面、的各单肢板的转角和位移,由(2)~(7)式及弯矩矢量和剪力矢量之间的微分关系, 写出如下矩阵方程组:

$$\begin{bmatrix} \theta_i \\ \delta_i \end{bmatrix} = \begin{bmatrix} l[f] & (l^2/2)[f] \\ (l^2/2)[f] & (l^3/3)[f] \end{bmatrix}$$

$$\begin{bmatrix} \theta_i \\ \delta_i/l \end{bmatrix} = \begin{bmatrix} [f] & [f]/2 \\ [f]/2 & [f]/3 \end{bmatrix} \begin{bmatrix} M_i \\ Q_i l \end{bmatrix}$$

$$(10)$$

即

将断面1-1、2-2加以上角标1和2以示区别,代人相关数据得它们的转角和位移矩阵为

- A! -	1							- M ¹
• I	$= \frac{1}{10^3 E}$	0.230 377	0.066 055 0	0.068 807 3	0.115 188 5	0.033 027 5	0.034 403 7ך	<i>m</i> ₁
θ_2^1		0.066 055 0	0.055 045 7	0.107 339	0.033 027 5	0.027 522 9	0.053 669 5	M_2^1
θ_3^1		0.068 807 3	0.107 339	0.674 312	0.034 403 7	0.053 669 5	0.337 156	M_3^1
θ_1^1/l		0.115 189	0.033 027 5	0.034 403 7	0.076 792 3	0.022 018 3	0.022 935 8	$Q_1^1 l$
θ_2^l/l		0.033 027 5	0.027 522 9	0.053 669 5	0.022 018 3	0.018 348 6	0.035 779 7	$Q_2^1 l$
θ_3^1/l		0.034 403 7	0.053 669 5	0.337 156	0.022 935 8	0.035 779 7	ل 0.224 771 ا	$L_{Q_1^1}$
	$\theta_1^1 - \theta_2^1 - \theta_2^1 - \theta_3^1 - \theta_3^1 - \theta_3^1 - \theta_2^1 - \theta_2^1 - \theta_2^1 - \theta_3^1 - \theta_3^$	$ \begin{array}{c} \theta_1^1 \\ \theta_2^1 \\ \theta_3^1 \\ \theta_1^1 / l \\ \theta_2^1 / l \\ \theta_3^1 / l \end{array} = \frac{1}{10^3 E} $	$ \begin{array}{c} \theta_1^1 \\ \theta_2^1 \\ \theta_3^1 \\ \theta_1^1/l \\ \theta_2^1/l \\ \theta_2^1/l \end{array} = \frac{1}{10^3 E} \begin{bmatrix} 0.230\ 377 \\ 0.066\ 055\ 0 \\ 0.068\ 807\ 3 \\ 0.115\ 189 \\ 0.033\ 027\ 5 \\ 0.034\ 403\ 7 \end{bmatrix} $	$ \begin{array}{c} \theta_1^1 \\ \theta_2^1 \\ \theta_3^1 \\ \theta_1^1/l \\ \theta_2^1/l \\ \theta_3^1/l \end{array} = \begin{array}{c} 0.230\ 377 & 0.066\ 055\ 0 \\ 0.066\ 055\ 0 & 0.055\ 045\ 7 \\ 0.068\ 807\ 3 & 0.107\ 339 \\ 0.115\ 189 & 0.033\ 027\ 5 \\ 0.033\ 027\ 5 & 0.027\ 522\ 9 \\ 0.034\ 403\ 7 & 0.053\ 669\ 5 \end{array} $	$ \begin{array}{c} \theta_1^1 \\ \theta_2^1 \\ \theta_3^1 \\ \theta_1^1/l \\ \theta_2^1/l \\ \theta_3^1/l \end{array} = \frac{1}{10^3 E} \begin{bmatrix} 0.230\ 377 & 0.066\ 055\ 0 & 0.068\ 807\ 3 \\ 0.066\ 055\ 0 & 0.055\ 045\ 7 & 0.107\ 339 \\ 0.068\ 807\ 3 & 0.107\ 339 & 0.674\ 312 \\ 0.115\ 189 & 0.033\ 027\ 5 & 0.034\ 403\ 7 \\ 0.033\ 027\ 5 & 0.027\ 522\ 9 & 0.053\ 669\ 5 \\ 0.034\ 403\ 7 & 0.053\ 669\ 5 & 0.337\ 156 \end{bmatrix} $	$ \begin{array}{c} \theta_1^1 \\ \theta_2^1 \\ \theta_3^1 \\ \theta_1^1/l \\ \theta_2^1/l \\ \theta_3^1/l \end{array} = \frac{1}{10^3 E} \begin{bmatrix} 0.230\ 377 & 0.066\ 055\ 0 & 0.068\ 807\ 3 & 0.115\ 188\ 5 \\ 0.066\ 055\ 0 & 0.055\ 045\ 7 & 0.107\ 339 & 0.033\ 027\ 5 \\ 0.068\ 807\ 3 & 0.107\ 339 & 0.674\ 312 & 0.034\ 403\ 7 \\ 0.115\ 189 & 0.033\ 027\ 5 & 0.034\ 403\ 7 & 0.076\ 792\ 3 \\ 0.033\ 027\ 5 & 0.027\ 522\ 9 & 0.053\ 669\ 5 & 0.022\ 018\ 3 \\ 0.034\ 403\ 7 & 0.053\ 669\ 5 & 0.337\ 156 & 0.022\ 935\ 8 \\ \end{array} $	$ \begin{array}{c} \theta_1^1 \\ \theta_2^1 \\ \theta_3^1 \\ \theta_1^1/l \\ \theta_2^1/l \\ \theta_3^1/l \end{array} = \frac{1}{10^3 E} \begin{bmatrix} 0.230\ 377 & 0.066\ 055\ 0 & 0.068\ 807\ 3 & 0.115\ 188\ 5 & 0.033\ 027\ 5 \\ 0.066\ 055\ 0 & 0.055\ 045\ 7 & 0.107\ 339 & 0.033\ 027\ 5 & 0.027\ 522\ 9 \\ 0.068\ 807\ 3 & 0.107\ 339 & 0.674\ 312 & 0.034\ 403\ 7 & 0.053\ 669\ 5 \\ 0.115\ 189 & 0.033\ 027\ 5 & 0.034\ 403\ 7 & 0.076\ 792\ 3 & 0.022\ 018\ 3 \\ 0.033\ 027\ 5 & 0.027\ 522\ 9 & 0.053\ 669\ 5 & 0.022\ 018\ 3 & 0.018\ 348\ 6 \\ 0.034\ 403\ 7 & 0.053\ 669\ 5 & 0.337\ 156 & 0.022\ 935\ 8 & 0.035\ 779\ 7 \\ \end{array} $	$ \begin{array}{c} \theta_1^1 \\ \theta_2^1 \\ \theta_3^1 \\ \theta_1^1/l \\ \theta_2^1/l \\ \theta_3^1/l \end{array} = \frac{1}{10^3 E} \begin{bmatrix} 0.230\ 377 & 0.066\ 055\ 0 & 0.068\ 807\ 3 & 0.115\ 188\ 5 & 0.033\ 027\ 5 & 0.034\ 403\ 7 \\ 0.066\ 055\ 0 & 0.055\ 045\ 7 & 0.107\ 339 & 0.033\ 027\ 5 & 0.027\ 522\ 9 & 0.053\ 669\ 5 \\ 0.068\ 807\ 3 & 0.107\ 339 & 0.674\ 312 & 0.034\ 403\ 7 & 0.053\ 669\ 5 & 0.337\ 156 \\ 0.115\ 189 & 0.033\ 027\ 5 & 0.027\ 522\ 9 & 0.053\ 669\ 5 & 0.337\ 156 \\ 0.033\ 027\ 5 & 0.027\ 522\ 9 & 0.053\ 669\ 5 & 0.022\ 018\ 3 & 0.018\ 348\ 6 & 0.035\ 779\ 7 \\ 0.034\ 403\ 7 & 0.053\ 669\ 5 & 0.337\ 156 & 0.022\ 935\ 8 & 0.035\ 779\ 7 & 0.224\ 771 \end{bmatrix} $

ſ	θ_1^2	$= \frac{1}{10^3 E}$	0.674 312	0.107 339	0.068 807 3	0.337 156	0.053 669 5	0.034 403 77	$\begin{bmatrix} M_1^2 \end{bmatrix}$
	θ_2^2		0.107 339	0.055 045 7	0.066 055 0	0.053 669 5	0.027 522 9	0.033 027 5	M_2^2
	θ_3^2		0.068 807 3	0.066 055	0.230 377	0.034 403 7	0.033 027 5	0.115 189	M_3^2
	θ_1^2 / l		0.337 156	0.053 669 5	0.034 403 7	0.224 771	0.035 779 7	0.022 935 8	$Q_1^2 l$
	θ_2^2/l		0.053 669 5	0.027 522 9	0.033 027 5	0.035 779 7	0.018 348 6	0.022 018 3	$Q_2^2 l$
L	θ_3^2/l^2		0.034 403 7	0.033 027 5	0.115 188 5	0.022 935 8	0.022 0183	0.076 792 3	$\left\lfloor O_{1}^{2} \right\rfloor$

根据平衡方程(9),消去 M_1^2 、 M_2^3 、 M_3^2 、 O_1^2 、 O_2^3 、 O_2^3 ,得

 θ_1^2 M_1^1 0.674 312 0.107 339 0.068 807 3 0.337 156 0.053 669 5 0.034 403 7 θ_2^2 M_2^1 0.107 339 0.055 045 7 0.066 055 0 0.053 669 5 0.027 522 9 0.033 027 5 θ_3^2 0.068 807 3 0.066 055 0.023 037 7 0.034 403 7 0.033 027 5 0.115 189 M_{3}^{1} $=\overline{10^3}E$ θ_1^2/l 0.337 156 0.053 669 5 0.034 403 7 0.224 771 0.035 779 7 0.022 935 8 $-Q_1^1l - Pl$ 0.027 522 9 0.033 027 5 0.035 779 7 0.018 348 6 0.022 018 3 0.053 669 5 θ_{2}^{2}/l $- 0^{1}_{2}l$ 0.034 403 7 0.033 027 5 0.115 188 5 0.022 935 8 0.022 018 3 0.076 792 3 θ_2^2/l $- 0^{1}_{1}l$

由变截面处的变形协调条件有

 $M_3^4 = M_3^2 + O_3^2 l = 3.306 \ 179 \ \text{kN} \cdot \text{cm}$

依照叠加原理,截面任一点的应力计算式为:

$$\sigma_n = \frac{M_1^j r_{11} \omega_{n1}}{I_{\omega 1}} + \frac{M_2^j r_{22} \omega_{n2}}{I_{\omega 2}} + \frac{M_3^j r_{33} \omega_{n3}}{I_{\omega 3}}$$

式中 ω_{ni} (*i*=1、2、3)表示在 *M*;作用下的单位翘曲位移图中 n 点的坐标值,计算出 3-3、4-4 截面各节点的应力值如图 6 所示。实际上,还可以计算出其他截面各点的应力和位 移值。需要说明一点的是计算出来的截面位移值由于没有 考虑自由扭转刚度的影响要比实际值偏大,但是这种差值

矢量和剪力矢量值 73 283 kN•cm 255 025 kN·cm 00.343 840 kN·cm

是比较微小的,而且是偏安全考虑,从实用性和精度的角度来衡量,上面的计算方法是比较优越的。 下面,再来求断面1-1、2-2在相应的弯矩矢量和剪力矢量作用下的转角和位移,看是否满足该处

的变形协调条件,由断面1-1、2-2的转角和位移矩阵以及该处的弯矩矢量值和剪力矢量值,求得

 $\int \theta_1^1 = -25.069\ 288\ 1$ $\theta_2^1 = -2.331\ 323\ 325$ $\theta_3^1 = -5.968\ 06 \times 10^{-5}$ $\delta_{1}^{l}/l = -34.428\ 054\ 86 \qquad \delta_{2}^{l}/l = -6.903\ 791 \qquad \delta_{3}^{l}/l = -5.550\ 209\ 63$

 $\begin{cases} \theta_1^2 = -25.069\ 287\ 88 & \theta_2^2 = -2.331\ 323\ 295 & \theta_3^2 = -3.593\ 27\times10^{-5} \\ \delta_1^2/l = -34.428\ 585\ 66 & \delta_2^2/l = -6.903\ 871 & \delta_3^2/l = -5.550\ 194\ 087 \end{cases}$

可以看出,计算结果满足断面处的变形协调条件,其微小的误差仅是由于计算精度引起的。

4 结语

从上文知道,翘曲理论中关于横截面绕转动中心转动的概念,使变形量统一消元为一维问题,使薄 壁构件的空间变形能够直接计算出来,这不仅在一阶分析中发挥着重大的作用,比如使弯心不共线、错 位支座等难题迎刃而解;而且对薄壁构件的二阶分析也至关重要,由此能导出薄壁梁柱空间失稳时临界 力的统一表达式和相应的屈曲模态及其直观描述。

参考文献:

- [1] 李开禧.弹性薄壁杆件[M].北京:中国建筑工业出版社,1990.
- [2] 李明昭,周竟欧.薄壁杆结构计算[M].北京:高等教育出版社,1992.
- [3] 包世华,周坚.薄壁杆件结构力学[M].北京:中国建筑工业出版社,1991.
- [4] C.P. Heins. Bending and Torsion Design in Structural Members(M). D.C. Heath and Company, 1975.
- [5] 陈永庆,李开禧.薄壁构件一阶分析的新方法[J].重庆建筑大学学报,2000,22(5):102-106.
- [6] 李开禧,王永华,向洪源.翘曲理论的计算机验证[J].重庆建筑大学学报,2002,24(5):46-57.

(上接第10页)

摩崖佛殿建筑内部感人的空间氛围,丰富的空间层次都反映出古代工匠在空间营造上的娴熟技巧。 巴蜀地区古代工匠运用视线设计、尺度对比、自然光线以及室内外空间的渗透与融合等多种手法,成功 地塑造出具有感染力的摩崖佛殿建筑空间。这种结合自然、因地制宜,以及以人的真实体验和感受为出 发点的设计理念对今日的建筑设计无疑也是具有启迪意义的。

参考文献:

- [1] 〔美]H.因伐耳特.键陀罗艺术[M].上海:上海人民美术出版社,1991.
- [2] [日]羽溪了谛.西域之佛教[M].北京:商务印书馆,1999.
- [3] 黄河涛,禅与中国艺术精神的嬗变[M].北京:商务印书馆,1994.
- [4] 萧默.敦煌建筑研究[M].北京:文物出版社,1989.
- [5] 刘敦桢.中国古代建筑史[M].北京:中国建筑工业出版社,1984.
- [6] 陈世松.四川简史[M].成都:四川省社会科学院出版社,1986.
- [7] 黎方银.大足石窟艺术[M].重庆:重庆出版社,1990.