重塑黏土和原状粉质黏土的动力特性试验研究

影^{1,2}, 肖启华², 梁义聪² 푨

(1.大连理工大学 土木水利学院,辽宁大连 116024;2.中冶赛迪工程技术股份有限公司 建工部,重庆 400013)

摘要:试验采用单个空心试样振后固结再振的动扭剪方法与采用多个试样的常规动扭剪方法,针对重塑 黏土、原状粉质黏土探讨了不同方法下两种土样的动力特性。试验结果表明:单个试样振后固结再振 得到的动剪切模量G、阻尼比&与用多个试样的常规动扭剪方法得到的试验结果比较接近,可以认为在 小应变下采用单个试样振后固结再振的试验方法是比较可靠的。同时发现卸压时的G随着固结压力的 减少而降低,下降的梯度比加压时的小。重塑黏土和原状粉质黏土的 $G/G_{max} \sim \gamma$ $\pi \epsilon/\xi_{max} \sim \gamma$ 基本与试 验方法和围压无关,并对模型中有关参数的影响因素做出了初步的探讨,给出了归一化动力变形关系曲 线。采用单个试样进行振后固结再振的方法具有节省取样数量和减小试验操作、试样差异等因素对试 验结果分析的影响,并且在试验结果可靠的基础上能够提供很多便利。

关键词:空心试样;重塑黏土;原状粉质黏土;动剪切模量;阻尼比

中图分类号:TU43 文献标志码:A 文章编号:1006-7329(2008)06-0066-06

Dynamic Properties of Saturated Clay and Undisturbed Silty Clay

NIE Ying^{1, 2}, XIAO Qi-hua², LIANG Yi-cong²

(1. School of Civil and Hydraulic Engineering, Dalian University of Technology, Dalian 116085, P. R. China; 2. Institute of Construction Engineering, CISDI Engineering Co. Ltd., Chongqing 400013, P. R. China)

Abstract: The apparatus for static and dynamic universal triaxial and torsional shear soil testing was employed to perform stress-controlled cyclic torsional shear testing under isotropic consolidated conditions. We conducted a dynamic torsion test of a single hollow sample to obtain its dynamic property data at different effective confining pressures with saturated clay and disturbed silty clay. The results show that the maximum dynamic shear modulus G_{max} and ξ obtained from single sample of the cyclic shear test approached those of the traditional method of dynamic torsional testing. We indicate that $G/G_{\max} \sim \gamma$ and $\xi/\xi_{\max} \sim \gamma$ of the two soils are independent of confining pressure and testing methods. Each G and ξ can be obtained from the equations we provide. Furthermore, the single sample test method can diminish the differences between the samples during experimentation and effectively provide convenience with authentic experimental results.

Key words: hollow sample; remolded clay; undisturbed silty clay; dynamic shear modulus; damping ratio

21世纪,国家重点兴建三峡库区百万移民重建工 程。三峡库区表层 10 m 以内主要以黏土和粉质黏土 层为主,这两种土类在动荷载作用下会发生振动弱化, 其振动弱化之后更不利于建筑物的地基稳定,如发生 滑移和过大的沉降等。故在进行三峡库区建设的地基 设计计算时,应做地基的动力稳定分析,就要用到土的 动剪切模量和阻尼比。动剪切模量和阻尼比是描述土 体在剪应力作用下应力应变关系的两个参数,也是研 究土动力学的一个重要方面。同时土的动剪切模量和 阻尼比是建立 Hardin-Drnevich 模型中所需要的最重 要的两个参数[1]。图1是土在承受动力荷载作用下动 剪切模量随剪应变衰减的理想曲线及常见结构荷载的 典型应变范围[2]。关于模量和阻尼比的研究,石兆吉 等[3]利用共振柱仪研究了围压、土壤密度和含水量等 因素对土动压缩模量的影响;顾尧章[4]以饱和黏性土 为土样进行大量共振柱试验,研究表明剪切模量不仅 与剪应变的幅值有关,而且还随着固结特性的变化而 变化;袁晓铭等^[5]采用共振柱自振台对国内常规土类

作者简介:聂影(1980-),男,博士生,主要从事软土工程等方面的试验与理论研究。(E-mail)nie.y@163.com 欢迎访问重庆大学期刊网 http://qks.cqu.edu.cn

^{*} 收稿日期:2008-05-20

基金项目:国家自然科学基金资助项目(50579006,50639010);国家自然科学基金重点基金资助项目(50439010)

动剪切模量比和阻尼比进行了试验研究;郭中华等[6] 采用共振柱试验对常熟太仓地区淤泥质粉质黏土进行 了试验研究,得到了其动剪切模量的变化规律;谢定 义^[7]指出,对于测定动模量和阻尼比的试验,在小应变 的情况下,允许对一个试样进行逐级加载;有学者在遵 照规范规定的前提下,使用了单个实心试样利用动三 轴试验通过多次固结的方法来获得不同初始固结压力 下的动模量阻尼比特性。这种方法能够节省装样、拆 样以及试样饱和的时间,在很大程度上能够提高工作 效率。何昌荣、王权民、郭莹等[8-10]分别针对黏土、砂 土、粉煤灰通过多个工程实际,利用一个试样多次固结 方法在动三轴仪上测定了动模量和阻尼比,并验证了 试验结果的可靠性。但是他们没有讨论在小应变下利 用单个空心试样通过改变初始固结压力(包括加压和 卸压),再逐级加载的动扭剪试验方法来获取动剪切模 量和阻尼比的可行性。

图 1 动剪切模量随剪应变变化的理想曲线

由于试样、试验操作等的差异都可能使得到的试 验数据离散性很大,使试验工作和数据处理更为复杂, 且黏土和粉质黏土的离散性较砂土更大一些[11]。并 且对实际地基来说,土的振动变形大部分是从下卧层 向上传递的剪切波引起的,因此利用空心试样扭剪试 验能更真实地模拟实际地基的这种应力条件[12]。但 是由于黏土和粉质黏土空心试样制备较困难,试验较 为复杂而且相当花费时间,目前这方面的研究较少,这 在很大程度上阻碍了该类土体的试验和理论研究。因 此,本项试验探讨了利用重塑黏土和原状粉质黏土空 心试样振后固结再振方法(包括加压、卸压)进行动扭 剪试验,以获得不同围压下的动剪切模量和阻尼比,并 且与常规振动扭剪的试验方法的结果进行了比较。

试验设备和试验方法 1

1.1 试验土料与试验方法

试验所用黏土采用真空抽吸法[13]制备成土工试 验所需的样品,基于上述制样过程所制备的样品具有 组成成份均一、饱和程度高、易于切削制备成三轴或空 心圆柱试样等优点,且通过静三轴试验证明不同试样

土(采样现场的地址剖面图见图 2)初始状态其泊松比 接近 0.44,并且样品运输和保存过程中的失水问题。 试验之前采用抽真空一循环脱气水并施加反压的方法 饱和。所有试样保证孔隙水压力系数 B 值达到 0.98 以上。试样饱和后,在规定初始固结压力状态下固结 稳定后进行预定的动力试验。试样的基本物理性质指 标如列于表1。

采样现场的建筑地基地质剖面图 图 2

表1 重塑黏土和粉质黏土试样的物理性质指标

土样名称	$(t \cdot m^{-3})$)/ %	$G_{\rm s}$	/ %	/ %	$I_{ m p}$
重塑黏土	1.95	29	2.74	18.3	36.7	18.4
粉质黏土	1.92	17	2.71	14.03	24.1	10.07

首先分别用单个重塑黏土试样和原状粉质黏土试 样在100kPa的初始均等固结压力固结,在不排水条件 下,分段施加15级左右的不同荷载,每级荷载进行5 次循环。对于同一试样,继续分别以 200、400 kPa 的 固结压力固结,分段施加循环荷载;再对同一试样,逐 渐减少固结压力(卸压)至 200、100 kPa 再固结,分段 施加循环荷载,在相应递减的固结压力下也测定土在 回弹时的G和 ε 。在试验中要注意在后一级 σ_3 施加动 荷载时应避免孔隙水压力明显升高。试验结果同时发 现:在试验中如果孔压上升 0.1₀₃,体变传感器测到的 体变量小于振前排水固结的10%,也明显小于后一级 σ_3 的体变量。因此,可以认为下一级 σ_3 作用下产生的 变化受前一级 σ3 及其振动过程的影响较小。同时采 用常规的试验方法,即采用多个试样分别在不同初始 固结压力下进行动扭剪动力特性试验,并对两种试验 方法的结果进行比较,得出前一种试验曲线在后一种 试验曲线上下 20 %以内。因此,这种用单个试样得到 不同初始均等固结压力的动剪切模量和阻尼比的方法 是一种较简单可靠的方法。

1.2 试验设备及试样尺寸

本次研究使用的仪器土工静力一动力液压三轴一 扭转多功能剪切仪,对于转角的测量,该仪器设置了两 的试验数据具有可比较性高的特点。考虑原状粉质黏 套测量系统:一套为内置式的非接触转角计用于测量微 欢迎访问重庆大学期刊网 http://gks.cgu.edu.cn 小转角,最大量程1.0°,另一套是普通的接触式转角传 感器,最大量程为40°。开始振动时,试样处于微小变形 阶段,此时的非接触式转角计置于最小档(1.0°),随着循 环荷载级数的增加,转角将超过非接触式转角计的量 程,为防止仪器损坏,在循环加载停止的间隙将非接触 式转角计提起,继续使用接触式转角传感器进行测量。 使用这种方法测得的最小剪应变为10⁻⁵量级,处理试验 数据时发现,非接触式转角计测得的剪应变可达到 10⁻³,大于10⁻³的剪应变由接触式转角计获得。

本次试验采用空心圆柱试样,试样的外径和内径分 别为70mm和30mm,高度为100mm(见图3)。循环 扭剪试验采用正弦波循环荷载,内、外腔同时施加均等 围压,进行排水固结。固结完成标准:施加围压后打开 排水阀或体变阀和反压力阀,使试样排水固结,依据《土 工试验规程》(SL237-1999)中的固结完成标准:1h内 固结排水量变化不大于0.1 cm³ 作为固结稳定标准。

图 3 空心圆柱试样中土的应力状态

2 剪切模量试验结果分析

2.1 单个试样加压的G~γ关系曲线

依据循环应力条件下动剪应力 τ 和剪应变 γ 的滞 回关系曲线确定不同应变水平下的动剪切模量 G

$$G = \tau / \gamma \tag{1}$$

黏土和粉质黏土采用单个试样方法在不同围压下 的动剪切模量G随剪应变γ的变化规律,如图4所示。 剪切模量随着围压的增大而增加,这是由于对试样施 加围压的过程中,试样内部的颗粒接触呈不断加密趋 势,孔隙比变小,土颗粒接触点增加,导致在施加相同 的动剪力的情况下得到的动应变较小,骨干曲线的斜 率增大,计算得到的G也增大;在γ=10⁻⁴附近G存在 着一个界限应变值,γ小于此值时G<u>随γ,衰减的趋势</u> 较缓,γ大于此值时G 随γ衰减的趋势急剧增加。从 图中还可看出,原状粉质黏土的G比重塑黏土在相同 围压下大,且粉质黏土在围压增大时G增大的更多, 即粉质黏土的剪切模量比黏土的剪切模量对围压更敏 感。这表明,颗粒级配中的黏粒成分不仅影响到黏土 和粉质黏土的在线弹性变形阶段的性质,对其非线性 动力学特性的影响也比较显著。

2.2 单个试样加卸压的G~γ关系曲线

对两种土的同一试样,逐渐减少固结压力(卸压) 至 200 kPa、100 kPa 再固结,分段施加循环荷载,得到 两种土在相应递减的固结压力时的卸压回弹 G~γ关 系曲线如图 5。从加卸压动剪切模量的图中还可以发 现,两种土卸压后的动剪切模量减小,但是比加压时相 同固结压力下的动剪切模量稍大一些。也就是说,在 卸压时的动剪切模量随着固结压力的减少而降低,下 降的梯度比加压时的小。

2.3 两种方法测得的G~γ关系曲线

针对两种土样采用单个试样进行振后固结再振的 方法与分别采用多个试样的方法确定的动剪切模量的 试验结果进行分析比较。由此获得的 G~γ 关系曲线 如图 6。(图中实心图标代表方法 1:单个试样振后固 结再振的结果;空心图标代表方法 2:多个试样分别固 结的结果)

图 6 两种土样由两种方法测得的 G~γ关系曲线

分析图 6 可知,两种试验方法对两种土的 $G \sim \gamma$ 关系曲线的趋势变化有一定影响,特别是在 $\gamma < 10^{-3}$ 范围内影响比较显著,即在微小剪应变幅值范围内影响显著。在 $\gamma > 10^{-3}$ 范围内两种试验方法对 $G \sim \gamma$ 关系曲线的趋势已经没有影响。利用单个试样振后固结再 ttp://qks.cqu.edu.cn

振的得到的动剪切模量比用多个试样分别固结的得到的结果略低,但十分接近,而在初始固结压力为400 kPa时5,两条曲线的差异明显扩大,说明两条曲线差 异的程度随着初始固结压力的增大而增大,当然这种 差异的出现不能排除采用不同的试样进行试验本身所 产生的试验结果误差。与常规动扭剪试验的结果比 较,特别是在低围压下还是比较理想,能够基本确保试 验结果的可靠性。由图6还可以观察得到原状粉质黏 土在初始固结压力在400 kPa时的差异比黏土的差异 更大一些,这可能与两种土样的内部结构性有关。

2.4 由不同试验方法获得的 G_{max} 和 G/G_{max}

由室内试验资料推求最大剪切模量时,假定土的动应 力一应变关系满足 Hardin-Drnevech^[2]双曲线模型, 其表达式可写为

$$\tau_{\rm m} = \gamma_{\rm m} / (a + b \gamma_{\rm m}) \tag{2}$$

式中, $a=1/G_{max}$, G_{max} 为剪应力一剪应变骨干曲线 的初始斜率; $b=1/\tau_{max}$, τ_{max} 是最大剪应力。由公式(2) 经过坐标变换为

 $\gamma_{\rm m}/\tau_{\rm m}=1/G=a+b\gamma_{\rm m}=1/G_{\rm max}+\gamma_{\rm m}/\tau_{\rm max} \qquad (3)$

可得 $1/G_{max} \sim \gamma$ 直线关系,再由直线的截距 a 取 倒数可得骨干曲线的初始斜率,即最大动剪切模量 G_{max} 。同时结合第二种计算方法,即在 $G \sim \gamma$ 关系图中 直接求取 $\gamma < 2 \times 10^{-5}$ 剪应变的动剪切模量作为最大 动剪切模量 G_{max} 。

表 2 加卸压条件下两种土样的 1/G~γ 直线拟合结果

黏土		加压	卸压			
$p'_{\rm m0}/{ m kPa}$	100	200	400	200	100	
a / MPa^{-1}	0.022 0	0.017 6	0.012 3	0.016 4	0.020 4	
b / MPa^{-1}	0.327 3	0.237 0	0.209 1	0.215 7	0.276 5	
G^*_{\max}/MPa	45.45	56.81	81.30	60.98	49.02	
粉质黏土		加压		卸压		
$p'_{\rm m0}/{\rm kPa}$	100	200	400	200	100	
a / MPa^{-1}	0.019 27	0.012 25	0.007 44	0.010 58	0.015 94	
b / MPa^{-1}	0.390 6	0.231 63	0.067 75	0.212 76	0.261 93	
G^*_{\max}/MPa	51.89	81.63	134.41	94.52	62.74	

加卸压条件下和采用两种不同试验方法求取的最 大动剪切模量如表 2、表 3 所示。由此可以发现在小 应变幅下($\gamma < 3 \times 10^{-4}$),土的动剪应力一剪应变关系 满足 Hardin—Drnevech 双曲线模型,通过提高微小应 变幅的测试精度,由 $1/G \sim \gamma$ 直线的截距求取最大剪 切模量 G_{max} 的方法是可靠的。从表 2、表 3 还可以发 现,卸压会使黏土和粉质黏土的剪切模量下降,但卸压 时并不等于加压时围压相等条件下的剪切模量,而是 偏高些。并且卸压越大,得到的剪切模量和加压时相 比相差越大。

对应上述两种试验建立最大剪切模量随平均有效 固结压力的依赖关系。图 7 给出了按照标准大气压力 p_a 进行归一化后的黏土和原状粉质黏土无量纲最大 剪切模量 G_{max}/p_a 与平均有效固结压力 p'_{m0}/p_a 之间 的关系。由图可见在双对数坐标上最大动剪切模量与 平均有效固结压力之间的依赖关系基本上呈现出良好 的线性关系,可以采用 Janbu 经验公式进行拟合^[14], Janbu 经验公式表达式为:

$$G_{\rm max} = k_{\rm G} \times p_{\rm a} (p'_{\rm m0}/p_{\rm a})_{\rm G}^n \tag{4}$$

式中, p'_{m0} 为初始平均有效主应力(对于均等固结 情况,初始平均有效主应力 p'_{m0} 与初始固结压力 σ_{3c} 相 等); p_a 为标准大气压力,用于无量纲化 k_{G} 。 k_{G} 与 n_{G} 分别称为剪切模量系数与剪切模量指数。表4给出了 两种土样对应两种不同试验方法的线性拟合参数 k_{G} 与 n_{G} 的结果。

表 3 两种试验方法下两种土样的 1/G~γ 直线拟合结果

黏土	单个词	单个试样的试样方法			多个试样的试样方法			
$p'_{\rm m0}/{\rm kPa}$	100	200	400	100	200	400		
a / MPa^{-1}	0.022 0	0.017 6	0.012 3	0.022 0	0.015 9	0.010 4		
b / MPa^{-1}	0.327 3	0.237 0	0.209 1	0.327 3	0.264 6	0.226 5		
G^*_{\max}/MPa	45.45	56.81	81.30	45.45	62.89	95.96		
粉质黏土	单个词	试样的试材	羊方法	多个	试样的力	方法		
$p'_{\rm m0}/{\rm kPa}$	100	200	400	100	200	400		
a / MPa^{-1}	0.0193	0.012 25	0.007 44	0.019 3	0.0107	0.005 6		
b / MPa^{-1}	0.3906	0.231 63	0.067 75	0.390 6	0.208 1	0.1108		
$G^*_{ m max}/{ m MPa}$	51.89	81.63	134.41	51.89	93.15	178.57		

从图 7 和表 4 所示结果可见,不同试验方法对两种土的最大剪切模量 G_{max} 的经验参数 k_G 与 n_G 的影响不大,比较而言对粉质黏土比对重塑黏土影响要大些。 http://gks.cqu.edu.cn 可以认为,采用的一个试样进行振后固结再振与分别 采用多个试样的方法确定的动剪切模量的基本相同, 能够确保试验结果的可靠性,而且使试验及分析工作 量大大减小。

表 4 不同试验方法下两种土样的剪切模量参数 k_G 与 n_G

参数	单个试样加压	单个试样卸压	多个试样加压
黏土 k _G	445.09	498.98	446.68
黏土 n _G	0.404 6	0.323 0	0.529 8
粉质黏土 k _G	514.97	633.46	518.71
粉质黏土 n _G	0.686 56	0.549 59	0.891 48

将两种土样在两种方法下得到的动剪切模量 G 除 以各自的最大动剪切模量 G_{max},可得归一化剪切模量 G/G_{max}随剪应变幅的变化规律,如图 8 所示。图中可 见,采用两种方法得到的不同初始固结压力的 G/G_{max}~ γ关系曲线基本都落入一个很窄的带状范围内,试验方 法差异造成的影响在很大程度上被消除。点的分布和 拟合曲线吻合较好,本文建议的拟合曲线表达式为:

 $G/G_{\max} = 1/(1+c\gamma)^{d}$ (5) 黏土 $G/G_{\max} = 1/(1+28.22\gamma)^{0.797}$ 粉质黏土 $G/G_{\max} = 1/(1+37.28483\gamma)^{0.649}$

3 阻尼比试验结果分析

3.1 单个试样的 ξ~γ关系曲线

土的阻尼比表示的是土的粘滞性质,滞回曲线表 明土的粘滞性对应力应变的影响。阻尼比的大小可以 用剪应力和剪应变的滞回圈形状来衡量:粘滞性越小, 滞回环的形状越趋于扁薄;粘滞性越大,环的性质越趋 于宽厚。阻尼比 *ξ* 可由滞回圈的面积和原点到最大幅 值点连线下的三角形面积得到,为阻尼系数与临界阻 尼系数之比。由于阻尼比随剪应变变化规律比较复 杂,本文建议阻尼比经验公式为

$$\boldsymbol{\xi} = \boldsymbol{\xi}_{\min} + m \times [1 - (G/G_{\max})]^n \tag{6}$$

式中,*m*,*n* 为与土性相关的拟合参数,*ξ*_{min} 为与最 大动剪切模量 *G*_{max}相对应的最小阻尼比

	黏土				粉质黏土			
围压	100 k Pa	200kPa	400kPa	100kPa	200kPa	400kPa		
m	0.178 5	0.176 8	0.175 5	0.163 2	0.172 7	0.156 4		
n	1.018 6	1.086 8	1.090 2	0.711 1	1.000 9	0.8616		

从图中可以看出,初始固结压力对黏土和原状粉 质黏土的影响均不显著,但仍然可以看出阻尼比有随 着围压增大而减小的趋势。两种土样分别采用一个试 样振后固结再振的试验方法得到的阻尼比 *e* 的拟合结 果见图 9 和表 5。

3.2单个试样归一化 $\xi/\xi_{max} \sim \gamma$ 关系曲线

ξ/ξmax~γ曲线是表征土动力特性的重要曲线之一。图 10 为阻尼比随应变变化的归一化曲线,从图中看出,试验点均落在一条狭窄的带状区域内。点的分布与拟合曲线吻合较好,其拟合曲线表达式为:

$$\boldsymbol{\xi}/\boldsymbol{\xi}_{\max} = \boldsymbol{e} \times (\boldsymbol{\gamma}/(1+f\boldsymbol{\gamma}))^{g}$$
(7)
黏土 $\boldsymbol{\xi}/\boldsymbol{\xi}_{\max} = 1.431 \times (\boldsymbol{\gamma}/(1+2.039\boldsymbol{\gamma}))^{0.335}$
粉质黏+ $\boldsymbol{\xi}/\boldsymbol{\xi}_{\max} = 1.353 \times (\boldsymbol{\gamma}/(1+1.737\boldsymbol{\gamma}))^{0.315}$

4 结 语

本文比较分析了由采用单个空心试样通过改变初 始固结压力(包括加压、卸压)连续获得的 G 和 ę 的方 法,与采用多个试样在不同初始固结压力下进行常规 动力特性方法的试验结果:

1)两种土样分别利用独立试样振后固结再振得到 的动剪切模量比用多个试样分别固结得到的结果略 低,但试验曲线比较接近,可以认为这种试验方法是可 靠的。重塑黏土的剪切模量小于同样初始固结压力 ttp://qks.cqu.edu.cn (加、卸围压)下的粉质黏土的剪切模量,

2)在卸压时的动剪切模量随着固结压力的减少而 降低,下降的梯度比加压时的小。针对两种试验方法, 在双对数坐标上将黏土和粉质黏土的最大动剪切模量 按标准大气压力 *p*。进行归一化后的无量纲最大剪切 模量 *G*_{max}/*p*。与平均有效固结压力 *p*_{m0}/*p*。之间依赖关 系基本上呈现出良好的线性关系。

3)两种土样归一化后的 G/G_{max} ~ γ 和 ξ/ξ_{max} ~ γ 均基本落入一个很窄的范围内,说明对黏土和粉质黏 土使用独立试样进行连续固结所获得的试验结果是比 较满意的。采用振后固结再振方法可以节省取样数量 和解决土性不均匀问题,而且节省了装样、拆样的时 间,在试验结果可靠的基础上能够提供很多便利。

参考文献:

- [1] HARDIN B O, DRNEVICH V P. Shear modulus and damping in soils: measurement and parameter effects [J]. Journal of the Soil Mechanics and Foundations Division, American Society of Civil Engineering, 1972, 98 (SM6): 603-624.
- MAIR R J. Developments in geotechnical engineering research: Application to tunnels and deep excavations[J].
 Proc. Institute Civil Engineering London, 1993 (3): 27-41.
- [3] 石兆吉,丰万玲,张占吉,等. 土壤动压缩模量的共振柱 法测定[J]. 岩土工程学报,1985,7(6):25-32.
 SHI Zhao-ji, FENG Wan-ling, ZHANG Zhan-ji, et al. The measurement of dynamic young's modulus by resonant column method [J]. Chinese Journal of Geotechnical Engineering, 1985,7(6):25-32.
- [4] 顾尧章.海底黏土的剪切模量[J]. 岩土工程学报, 1995, 7(2): 29-35.

GU Yao-zhang. Shear modulus of the marine clay[J]. Chinese Journal of Geotechnical Engineering, 1995, 7 (2): 29-35.

[5] 袁晓铭,孙锐,孙静,等.常规土类动剪切模量比和阻尼 比试验研究[J].地震工程与工程振动,2000,20(4): 133-139.

YUAN Xiao-ming, SUN Rui, SUN Jing et al. Laboratory experimental study on dynamic shear modulus ratio and damping ratio of soils[J]. Earthquake Engineering and Engineering Vibration, 2000, 20(4): 133-139.

- [6] 郭中华,余湘娟,严蕴. 循环荷载作用软土计算模型初 探[J]. 河海大学学报,2002,30(1):109-112
 GUO Zhong-hua; YU Xiang-juan; YAN Yun. Discussion on calculation model for soft soil under cyclic loading[J] Journal of Hehai University, 2002, 30(1):109-112.
- [7] 谢定义. 土动力学[M]. 西安: 西安交通大学出版 社,1988.
- [8] 何昌荣.动模量和阻尼的动三轴试验研究[J]. 岩土工程 学报,1997,19(2):39-48.
 HE Chang-rong. Dynamic triaxial test on modulus and damping[J]. Chinese Journal of Geotechnical Engineering, 1997,19(2):39-48.
 [9] 王叔民 李刚 陈玉汉 第 厦门砂土的动力特性研究[J]
- [9] 王权民,李刚,陈正汉,等. 厦门砂土的动力特性研究[J]. 岩土力学. 2005, 26(10): 1628-1632.
 WANG Quan-min; LI Gang; CHEN Zheng-han, et al. Research on dynamic characteristics of sands in Xiamen city[J]. Rock and Soil Mechanics, 2005, 26(10): 1628-1632.
- [10] 郭莹,刘洋.确定动模量与阻尼比的试验技术研究[C]. 第七届全国土动力学学术会议论文集,北京:清华大学 出版社,2006,266-269.
- [11] 陈国兴,谢君斐,张克绪. 土的动模量和阻尼比的经验估 计[J]. 地震工程与工程振动, 1995, 15(1): 73-84.
 CHEN Guo-xing, XIE Jun-fei, ZHANG Ke-xu. The empirical evaluation of soil moduli and damping ratio for dynamic analysis [J]. Earthquake Engineering and Engineering Vibration, 1995, 15(1): 73-84.
- [12] 吴世明,徐攸在.土动力学现状与发展[J]. 岩土工程学报,1998,20(3):125-131.
 WU Shi-ming, XU You-zai. State-of-art and development of soil dynamics[J]. Chinese Journal of Geotechnical Engineering, 1998,20(3):125-131.
- [13] 齐剑峰, 聂影, 赵维,等. 室内黏土试样制备技术的改进 及应用[C]. 土工测试技术实践与发展(第24届全国土 工测试学术研讨会论文集),郑州:黄河水利出版社, 2005, 123-126.
- [14] 钱家欢,殷宗泽. 土工原理与计算[M]. 北京:中国水利 水电出版社,2000.

(编辑 陈 蓉)