挥发性污染物水气耦合扩散数值模拟

陈丽萍,蒋军成

(南京工业大学城市建设与安全工程学院,南京 210009)

摘 要:挥发性污染物泄漏进入天然水体造成水污染,因其挥发又造成空气污染。为反映水污染与 空气污染的耦合影响,以压缩型 VOF 算法为基础,根据挥发作用中的双膜理论,利用无量纲亨利常 数,建立挥发性污染物水气耦合扩散模型。利用基于非结构网格的高分辨率有界格式,对三氯乙烯 和三溴乙烯点源泄漏造成的水、空气污染实现耦合模拟,模拟结果比单相模型计算结果更接近实验 值。分析了环境温度和风速对不同无量纲亨利常数污染物在气液交界面上传质过程的影响。

关键词:污染;耦合扩散;模拟;有界格式

中图分类号:X131;TV131.2 文献标志码:A 文章编号:1674-4764(2010)05-0102-07

Coupling Diffusion Simulation of Volatile Pollutant in the Water and Air

CHEN Li-ping, JIANG Jun-cheng

(College of Urban Construction and Safety Engineering, Nanjing Industrial University, Nanjing, 210009, P. R. China)

Abstract: Spill of volatile poisons into natural water bodies causes water pollution and then air pollution arises from water pollution because of volatilization. In order to explain the coupling of water pollution and air pollution, the dimensionless Henry constant of volatile poisons was used to establish coupling diffusion model based on compressed VOF method and the double-film theory explained for volatilization. A high resolution bounded differencing scheme for arbitrarily unstructured meshes was applied to simulate coupling diffusion of trichloroethylene and tribromoethylene. The simulation results are in good agreement with those from single-phase model. The influence of environmental temperature, wind velocity and the dimensionless Henry constant on the mass transfer across gas-liquid interface was analysed.

Key words: pollution, coupling diffusion, simulation, bounded scheme

挥发性污染物泄漏进入天然水体造成水污染, 因其挥发作用又造成空气污染。严重情况下,由此 造成的水气污染演变为环境灾害,危害公共安全,因 此准确预测泄漏后挥发性污染物在水体和大气中的 时空分布有重要意义。挥发性污染物在气液交界面 的挥发传质过程与水体和空气中的污染物浓度相 关,所以水体和空气中的污染物浓度是相互耦合的。 已往都用单相模型研究挥发性污染物扩散,即污染 物气液相是独立建模的,气液交界面传质属边界条件。气液交界面传质研究中,Wesely^[1],Moog^[2]假设空气中污染物浓度为零,这样的假设统称为单相 单阻力模型,即污染物由液相挥发变为气相后,瞬时 无限扩散,气相扩散无阻力,仅有液相扩散阻力。显 然单相单阻力模型使得挥发性污染物水气耦合作用 体现不出来。Bade^[3]和 Hardt^[4]提出单相双阻力模 型,认为污染物挥发时气液相各存在一阻力。

收稿日期:2010-01-11

基金项目:国家"十一五"科技支撑计划课题资助(2006BAK01B02-03);南京工业大学学科基金资助(39714004) 作者简介:陈丽萍(1971-),女,博士,副教授,主要从事环境工程研究,(E-mail)clpjoy@njat.edu.cn。

Fan^[5-6]建立单相三阻力模型,该模型除气液相各存 在一阻力外,气液交界面上还假设有一准层流阻力。 上述的单相模型中气液相阻力是分开建立的,即气 液相阻力仅与各自传质系数成反比,并假设气相和 液相传质系数之间无关联。可见单相模型不能反映 挥发性污染物水气耦合作用。此外,污染物在天然 水体中因各向湍流扩散系数差别大而属各向异性扩 散,但在空气中扩散属各向同性扩散^[7-8]。所以,从 扩散的性质讲,挥发性污染物在水气中的扩散是有 界的。

两相流中 VOF 方法是应用广泛的界面流数值 方法^[9-10],其实现了水气同时计算,因此满足挥发性 污染物水气耦合扩散求解的要求。Caboussat^[11]和 Dolbow^[12]通过反复地界面重构实现 VOF 算法,界 面重构的 VOF 算法计算效率低下。

常规的离散格式不能很好地用于界面流,是因为低阶的离散格式造成界面附近严重的假扩散,锋利的界面被抹平;高阶离散格式又会造成非物理振荡。Leonard^[13]最初提出了变量归一化(normalised variable diagram, NVD)的有界离散格式。此后STOIC等NVD型有界格式都是在不同的差分格式之间进行切换,易造成求解不稳定^[14]。HLPA和CLAM格式应用了逐渐切换函数以避免求解的不稳定。但HLPA和CLAM格式仅适合结构网格上^[15]。Jasak等^[16]人提出了建立在非结构网格上的NVD型高阶Gamma有界格式,该格式是基于物理量梯度的归一化方法,采用了一阶迎风差分和中心差分之间光滑过渡。

论文引入人工压缩项,构造出压缩型 VOF 算法。据此,再由挥发作用的双膜理论^[7],利用无量纲 亨利常数建立挥发性污染物水气耦合扩散模型,实 现挥发性污染物水气扩散同时求解。压缩型 VOF 算法结合 Gamma 有界离散格式,可以自动处理界 面的拓扑演化,无需界面重构,提高计算效率^[17]。 该文数值模拟挥发性污染物三氯乙烯和三溴乙烯点 源泄漏后的水气耦合扩散过程,将模拟结果与实验 比较,得到挥发性污染物泄漏后在水体和空气中耦 合扩散过程的规律。

1 压缩型 VOF 算法构造

1.1 水体 VOF 压缩型模型

VOF 的基本原理是通过研究网格单元中液体和网格体积比函数 α 来构造和追踪气液交界面。若 $\alpha = 1$,说明该单元为液体;若 $\alpha = 0$,则该单元为气体;当 $0 < \alpha < 1$ 时,该单元为气液交界面。令 $\beta =$

1-α,网格单元的密度、黏度和速度等场量都表示为 液体和气体的体积加权平均,如网格单元流速 u; 如 下:

$$u_i = \alpha_{u_{\alpha_i}} + \beta u_{\beta_i} = \alpha u_{\alpha_i} + (1 - \alpha) u_{\beta_i}$$
(1)

式中 u_{a_i} 、 u_{β_i} 为液体、气体流速 $m/s,\alpha$ 网格单元 中液体与网格体积之比, β 网格单元中气体和网格体 积之比。

基于流体属性的表达,界面流可利用单场方程 描述。网格单元连续性方程和动量方程分别如下:

$$\frac{\partial u_i}{\partial x_i} = 0 \tag{2}$$

$$\frac{\partial \left(\rho u_{i}\right)}{\partial \tau} + \frac{\partial \left(\rho u_{j} u_{i}\right)}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \left(\mu_{t} \frac{\partial u_{i}}{\partial x_{j}}\right) - \frac{\partial p}{\partial x_{i}} + \rho f_{i}$$
(3)

式中: ρ 为密度 kg/m³;p为压强,Pa; μ ;为湍流 粘性系数,kg/ms; f_i 为质量力,N/m³。

α 的尖锐性和有界性的特征在离散时很难得到 保留。为解决此问题,许多研究者采用界面实时重 构,精确计算界面附近流体进出,得出合理的界面。 界面实时重构使得计算效率低下。该文摒弃界面重 构,导出体积比函数α压缩型方程。具体做法是由质 量守恒定律得出网格单元内α、β的变化率:

$$\frac{\partial \alpha}{\partial \tau} + \frac{\partial u_{\alpha_i} \alpha}{\partial x_i} = 0, \ \frac{\partial \beta}{\partial \tau} + \frac{\partial u_{\beta_i} \beta}{\partial x_i} = 0$$
(4)

将式(1)代入式(4)得出体积比函数 α 的压缩型 微分方程:

$$\frac{\partial \alpha}{\partial \tau} + \frac{\partial (u_{i\alpha})}{\partial x_{i}} + \frac{\partial ((u_{\alpha_{i}} - u_{\beta_{i}})(1 - \alpha)\alpha)}{\partial x_{i}} = 0$$
(5)

方程第 3 项称为压缩项,反映了气液交界面上 气液相对速度对气液交界面的影响。压缩项只在界 面附近过渡区域起作用, $\alpha = 1$ 和 $\alpha = 0$ 的单相区域 内不起作用。方程式(5) 有一重要特征,其解自动满 足 0 < α < 1 有界性。

1.2 挥发性污染物耦合扩散压缩型模型

挥发作用的双膜理论通常用来解释气液传质过 程。该理论假设物质由液相向气相挥发过程中要通 过气液界面上的一个薄"液膜"和一个薄"气膜"组 成的界面,即克服气液膜两阻力,而物质在此界面上 的变化是达到瞬时气液平衡,这一平衡遵循亨利定 律^[7]。由亨利定律表达式知污染物在气相中的浓度 C_{β} 与液相中的浓度 C_{a} 之比为无量纲亨利常数 H_{aw} , 即 $H_{aw} = C_{\beta}/C_{a}$ 。 H_{aw} 是物质与其分子结构和环境温 度有关的物性参数,可从相关化学手册查得。可见文 中的耦合模型是建立在双阻力基础上,通过无量纲 亨利常数耦合气液相浓度的。影响挥发传质过程的 因素有污染物的蒸汽压,但一定温度下,蒸汽压与气 相浓度一一对应,成正比关系。也就是说蒸汽压不是 独立于无量纲亨利常数的另一影响因素,蒸汽压对 挥发传质的影响可归为无量纲亨利常数的影响。此 外,环境温度也是通过无量纲亨利常数影响挥发传 质的,故将无量纲亨利常数作为重要影响因素进行 研究。

网格单元污染物总浓度表示为液体和气体的体积加权平均,再根据 H_{aw} ,得到 C_a 、 C_β 与网格单元 总浓度 C 的关系:

$$C_{\alpha} = \frac{1}{\alpha + (1 - \alpha)H_{aw}}C,$$

$$C_{\beta} = \frac{H_{aw}}{\alpha + (1 - \alpha)H_{aw}}C$$
(6)

式中 C_{β} 、 C_{α} 和 C 浓度 kg/m³。

由质量守恒定律得污染物在水、空气中单相迁 移方程分别为式(7)和式(8):

$$\frac{\partial (\alpha C_{\alpha})}{\partial t} + \frac{\partial (u_{i\alpha} C_{\alpha})}{\partial x_{i}} =$$

$$\frac{\partial}{\partial x_{i}} \left(E_{i} \frac{\partial (\alpha C_{\alpha})}{\partial x_{i}} \right) + k_{\alpha} \alpha C_{\alpha}$$

$$\frac{\partial (\beta C_{\beta})}{\partial t} + \frac{\partial (u_{i\beta} C_{\beta})}{\partial x_{i}} =$$
(7)

$$\frac{\partial}{\partial x_i} \left(D \, \frac{\partial \left(\beta \, C_\beta \right)}{\partial x_i} \right) + k_\beta \beta C_\beta \tag{8}$$

式中 u_i 为网格单元总速度,m/s; E_i 、D分别为 污染物在水、空气中湍流质扩散系数,m²/s; k_a 、 k_β 为污染物一级反应动力学系数,1/s。

式(7)、(8)相加,并将式(6)代入,整理后得出污 染物的水气迁移耦合扩散模型:

$$\frac{\partial C}{\partial t} + \frac{\partial (u_i C)}{\partial x_i} + \frac{\partial (u_i C)}{\partial x_i} + \frac{\partial (u_{a_i} - u_{\beta_i}) \alpha (1 - \alpha) \frac{1 - H_{aw}}{\alpha + (1 - \alpha) H_{aw}} C \right] \\
= \frac{\partial^2}{\partial x_i \partial x_i} \left[\frac{E_i \alpha + (1 - \alpha) H_{aw} D}{\alpha + (1 - \alpha) H_{aw}} C \right] + \frac{\alpha k_a + (1 - \alpha) k_\beta H_{aw}}{\alpha + (1 - \alpha) H_{aw}} C \qquad (9)$$

等号左边第 3 项是挥发性污染物在气液交界面 的交换量。水中 $\alpha = 1$,式(9)与式(7)一致;空气中 $\alpha = 0$,式(9)变为式(8)。因此挥发性污染物在水 体、空气及气液交界面的迁移过程可用式(9)统一描 述。

2 方程离散

 Gamma 格式 湍流计算采用 κ-ε 模型,数值离散用有限体积 法(FVM),采用交错网格,速度压力耦合用 PISO 算法,时间差分采用 Crank-Nicholson 格式,离散方程组的求解用 ADI 法,先求解方程式(2)、(3)、(5),得出水气动力学参数后,再解方程式(9)。

界面流对离散格式要求高,不满足有界性的离 散会产生严重的界面耗散和非物理振荡。该文采用 Gamma 离散格式以保证迁移扩散中物理量的有界 性。以一维流动为例说明 Gamma 格式的思想,如 图 1 中网格节点。

图1 网格节点

由 e 面上流通量的方向确定 Donor 和 Acceptor 网格单元,物理量 φ 的归一化过程^[13]如下:

$$\tilde{\varphi}_P = 1 - \frac{\varphi_E - \varphi_P}{2(\nabla \varphi)_P \cdot \boldsymbol{d}}$$
(10)

式中 d 为 Donor 与 Acceptor 网格单元间的距离矢量。

Gamma 差分格式中,界面上物理量 φ_e 取值:

当 $\tilde{\varphi}_P \leq 0$ 或 $\tilde{\varphi}_P \geq 1, \varphi_e = \varphi_P$ 当 $\beta_m \leq \varphi < 1, \varphi_e = f_e \varphi_P + (1 - f_e) \varphi_E$ 当 $0 < \tilde{\varphi}_P < \beta_m, \varphi_e = [1 - \gamma(1 - f_e)] \varphi_P + \gamma(1 - f_e) \varphi_E$

其中 $\gamma = \frac{\varphi_P}{\beta_m}, f_e = \overline{eE} / \overline{PE}, \beta_m$ 是常数,通常 0.1 《 $\beta_m \leq 0.5$ 。

2.2 压缩项相对速度的处理

方程式(5)和式(9)的压缩项上存在气液相对速度,用体积比函数 α 的单位梯度定义水气交界面法 线方向 n_i ,数值求解时相对速度 ($u_{a_i} - u_{\beta_i}$)在 n_i 方向的通量 F_n 的如下:

$$F_{n} = f_{b} \cdot n_{i}s_{i}$$
(11)
式中 f_{b} 称为约束通量,以保证 F_{n} 有界, $f_{b} =$

min(αf_u , max(f_u))。 $f_u \neq u_i$ 在控制容积表面 $s_i \perp$ 的单位面积通量,即 $f_u = \frac{u_i s_i}{|s_i|}$ 。

3 模型验证

3.1 物理模型与计算模型

为验证压缩性挥发性污染物水气耦合扩散模型的正确性,对三氯乙烯(C₂HCl₃)点源泄漏进行数值 模拟和实验验证。实验水槽长14.0 m,宽0.4 m,深 0.4 m,底坡为 3/700,均匀流处水深 0.087 m,水流 方向为 x 方向,水槽宽度为 y 方向。z 方向垂直向 上。为消除水槽进出口水流的影响,仅水槽中部作 为实验观察段,坐标原点设在水槽中部且岸边处,水 槽底部 z = 0。水中湍流扩散系数的计算参考文献 [18],空气中湍流质扩散系数 $D = \nu_t / Sc_a, \nu_t, Sc_a$ 为 湍流运动粘性系数和 Schmidt 数。实验在密闭的室 内进行,因此室内风速可忽略。模拟计算域水槽部 分 5 m×0.4 m×0.4 m,空气部分 5 m×3 m×10 m。网格为结构非均匀网格,自由水面附近区域对 网格加密。进口边界划分为水流速度进口和空气速 度进口,进口的 $k \in$ 由经验公式给出。假设出口断 面为充分发展的湍流,所有物理量一阶法向梯度为 零。50 mL 浓度为 2 g/L 的三氯乙烯溶液在 x = 0, y = 0.16 m 处分别瞬时泄漏。取样断面 x 值分别为 1.00 m、1.41 m、1.63 m、2.21 m 和 2.48 m 处。根 据文中建立的污染物的水气迁移耦合扩散模型,文 中重点研究的是三氯乙烯点源泄漏后三维水气耦合 扩散过程。而 2.48 m 横断面后,水中三氯乙烯溶液 横向扩散完毕,只有简单的纵向一维扩散,故2.48 m横断面后不再取样。

为确定水气采样点的位置,自行设计了图2所 示的叉形采样定位器。

图 2 采样定位器

定位器的横梁和各叉支均标有刻度。采集水样 时将注射器固定于采样定位器叉支相关位置,进行 同一断面多点同时取样,隔一段时间再用预先准备 好的同样取样装置进行取样。取样断面变化时,在 同样的水力条件下,再次投放 50 mL 浓度为 2 g/L 的三氯乙烯溶液,重复上述取样过程。气体采样中 将多孔玻板吸收管固定于采样定位器。采用气相色 谱法测定水样中的三氯乙烯,其原理是:在密闭的顶 空瓶中,三氯乙烯分子从液相逸入到液面上部空间 的其体重,在一定温度条件下,三氯乙烯分子在气液 两相之间达到动态平衡,此时三氯乙烯合子在气液 两相之间达到动态平衡,此时三氯乙烯合子在气液 度,原理是三氯乙烯与吡啶和碱反应生成红色,比色 定量。吡啶作为吸收剂,串联两个各装 10 mL 吸收 液的多孔玻板吸收管,置冰盐浴中,用抽气机抽气。 采样后,用吸收管中的吸收液洗涤进气管内壁 3 次, 由每个吸收管中各量取 5.0 ml 样品溶液,分别放入 比色管中,供测定用。配制三氯乙烯标准液:于 25 mL 量瓶中加入 10 mL 吸收液,准确称量,加 1~2 滴三氯乙烯,再准确称量。2 次称量之差即为三氯 乙烯的质量,加吸收液至刻度,计算 1 mL 溶液中三 氯乙烯的含量。再用吸收液稀释得三氯乙烯的标准 溶液。标准管的配制:向标准管中各加入 1 mL 氢 氧化钠溶液(10 g/L)混匀,在 70℃水浴中加热 3 min,取出加 3 mL 水,混匀,3 min 后目视比色定量。 按标准管配制的操作条件,将处理后的样品与标准 管目视比色,求出三氯乙烯含量。

3.2 模拟与实验分析

3.2.1 计算效率比较 对上述物理模型,该文用 压缩 VOF 计算比较 Caboussat 的三点界面重构、 Dolbow 的 X-FEM 界面重构和 Gamma 算法。所用 的微机为双核 Intel Pentium 4 CPU 3.00 GHz,计 算节点数 125 223,表 1 列出计算流动 1 s 时计算机 的耗时。可见 Gamma 算法省时,比三点界面重构 和 X-FEM 界面重构计算效率高 15.4%和 13.3%。

表1 计算效率比较

算法	三点界面重构	X-FEM 界面重构	Gamma
耗时/s	732	714	619

3.2.2 模型比较 图 3 是忽略风速,水流平均流速 9.35 cm/s,环境温度 25℃,泄漏后 20 s时,x=1.63 m断面上三氯乙烯浓度分布图。其中图(a)是应用 耦合模型模拟所得等值线,气液相浓度场同时得到 计算。而单相模型则无法实现气液相浓度场同时计 算。由图(a)可见水中垂向三氯乙烯浓度已达到均 匀一致,而空气中垂向浓度差别大。y值相同时,离 液面越远,三氯乙烯浓度越低。由于泄漏点偏离水 槽轴线,受水槽侧壁影响,浓度中心两侧浓度等值线 疏密不均。图(b)是该断面上高 0.1 m 处气体浓度 实验、该文耦合模型计算及单相单阻力、单相双阻 力、单相三阻力模型计算的比较。图(b)中耦合模型 计算的结果与实验值较吻合。而单相单阻力模型认 为空气中污染物浓度为零,与实验值有较大差别。 单相双阻力和单相三阻力模型虽优于单阻力模型, 但也不能较好地反映气体浓度空间分布的特性,是 因为单相双阻力和单相三阻力模型忽略了气相浓度 的梯度,故计算结果仅成直线。

图 3 三氯乙烯横向浓度分布

取样点 x=1.63 m, y=0.16 m, z=0.07 m, 耦 合模型及单相单阻力、单相双阻力、单相三阻力模型 计算所得的水体中三氯乙烯浓度与实验值的比较显 示于图 4。C/C。为三氯乙烯浓度与投放浓度之比。 图中可见,对于固定位置,随浓度中心的到来,水中 三氯乙烯浓度从零升至峰值后又迅速下降。实验和 模型计算都反映了这一特性,与单相单阻力、单相双 阻力、单相三阻力模型相比,该文耦合模型更接近实 验值。单相单阻力模型计算结果低于实验值,是因 为气体浓度为零的假设加剧了挥发传质过程,使得 单相单阻力模型计算得到的水中污染物浓度较实际 情况偏低。单相双阻力、三阻力模型用于液相浓度 计算的误差小于用于气相浓度计算的误差。

图 4 水体中三氯乙烯浓度比较

3.2.3 挥发性污染物浓度场分析 图 5 是 5 个取 样断面上 y=0.16 m,z=0.07 m 点水中三氯乙烯 浓度与投放浓度 C。之比随时间变化关系曲线。图

中可见:耦合模型模拟值和实验值较吻合,离泄漏点 越远的截面,达到峰值浓度的时间越长,且峰值浓度 越低。各截面的浓度曲线在时间上不对称,浓度衰 减的速率小于其上升的速率。离泄漏点越远的截 面,浓度曲线在时间上不对称性越明显。

三氯乙烯浓度变化(y=0.16 m) 图 5

图 6 是 5 个取样断面上 y=0.24 m,z=0.07 m 点水中三氯乙烯浓度与投放浓度 C₀之比随时间变 化关系曲线。此图上的曲线变化规律与图 5 一致。 较 y=0.16 m, y=0.24 m 点在横向上距泄漏点远 些,故图 6 五个截面上 y=0.24 m 点三氯乙烯峰值 浓度比图 5 中相应的浓度低些。

三氯乙烯浓度变化(y=0.24 m) 图 6

耦合模型模拟所得 y=0.16 m 纵截面上三氯乙 烯各时刻浓度见图 7,图中显示:随流动时间延长, 污染团中心浓度下降,同时污染团长度不断增大,说 明污染团随着水流进行有限的纵向延伸。就某固定 位置而言,浓度中心经过前的污染团长度要小于浓 度中心离开后的污染团长度,所以三氯乙烯峰值浓 度后的下降速率随时间延长而变小,也就是浓度随 时间变化曲线在时间上呈现不对称特性的原因。

3.3 挥发性污染物水气耦合扩散影响因素分析 3.3.1 环境温度及挥发性污染物种类的影响 环 境温度对污染物挥发作用的影响是通过无量纲亨利 常数体现的。不同挥发性污染物的无量纲亨利常数 受环境温度影响不同,因此,其水体泄漏后浓度变化 也就不同。论文比较了三氯乙烯和三溴乙烯(CHBr₃)

106

图 7 三氯乙烯泄漏各时刻浓度图

在不同环境温度下泄漏后水气耦合扩散过程。图 8 显示三氯乙烯和三溴乙烯无量纲亨利常数与环境温度的关系^[7]。随着环境温度的升高,三氯乙烯的无量纲亨利常数迅速增加,而三溴乙烯的无量纲亨利 常数上升极其缓慢。

50 mL浓度为2g/L的三氯乙烯和三溴乙烯溶 液泄漏后,在各环境温度下水中的峰值浓度与0℃ 时水中的峰值浓度之比显示于图9,忽略风速,C_{0℃} 表示0℃时水中三氯乙烯和三溴乙烯的峰值浓度。

图 9 不同环境温度下水中污染物峰值浓度衰减

图 9 显示:随挥发时间的增长,环境温度为 10℃、20℃和 30℃时三溴乙烯水中的峰值浓度与其 0℃时水中的峰值浓度之比缓慢下降,平均每秒下降 分别为 0. 021%、0. 060%和 0. 081%。环境温度越 高,水中三溴乙烯的峰值浓度下降得越快,说明挥发 作用随环境温度升高而增强。与三溴乙烯相比,随 挥发时间的增长,环境温度为 10℃、20℃和 30℃时 水中三氯乙烯的峰值浓度与其 0℃时水中的峰值浓 度之比下降明显加快,平均每秒下降分别为 0.154%、0.310%和 0.518%。这说明无量纲亨利 常数随环境温度变化大的污染物的挥发作用受环境 温度的影响也大。

3.3.2 风速的影响 挥发性污染物在水体和空气 中的浓度相互耦合,所以水面上空气流速必然作用 于气液交界面的挥发传质过程,也就影响水中污染 物浓度。图 10 是环境温度 25 ℃时,不同风速下污 染物泄漏 20 s 后,水中三氯乙烯和三溴乙烯峰值浓 度 C 与无风时水中峰值浓度 C_{nowind} 的比较。

图 10 不同风速下污染物浓度比较

模拟与实验均反映了由于风速的存在,污染物 挥发加速,水中污染物浓度减少,使得图 10 中 C 与 C_{nowind} 之比小于1,且风速越大,比值越小。三溴乙烯 的 C 与 C_{nowind} 之比随风速的增大下降的程度大于三 氯乙烯。由双膜理论知:污染物从液相挥发到气相 属相际传质过程,此传质过程中主要受到液相和气 相两个方面的阻力,由于液相污染物分子间吸引力 远大于其气相分子间吸引力,故液相阻力大于气相 阻力,可见气液相阻力属过程量。而无量纲亨利常 数是污染物气相浓度与液相浓度之比,属状态量。 无量纲亨利常数越高,说明污染物气液动态平衡时 气相浓度越高,污染物越易挥发,也说明挥发传质过 程中气相阻力越小。因此无量纲亨利常数越高,液 相阻力与气相阻力差别越大。加大风速,减小气相 阻力,使得气液交界面的挥发传质总阻力降低,从而 增加挥发量,这对低无量纲亨利常数的污染物起的

作用大。对于高无量纲亨利常数的污染物,液相阻 力远大于气相阻力,也就是说液相阻力成为其挥发 传质主要影响因素,而气相阻力的作用小,可见通过 加大风速减小气相阻力并不能显著提高挥发量。因 此随无量纲亨利常数的增加,污染物在水中的浓度 受风速影响是减弱的。

4 结论

1)该文构造出压缩型 VOF 算法,基于该算法, 根据挥发作用中的双膜理论,利用无量纲亨利常数, 建立了挥发性污染物水气耦合扩散模型,污染物在 水体、空气及气液交界面的迁移过程可用该模型统 一描述。压缩型 VOF 算法结合 Gamma 有界离散 格式,可以自动处理界面的拓扑演化,无须进行界面 重构,提高计算效率。

2)应用挥发性污染物水气迁移耦合扩散模型, 对三氯乙烯和三溴乙烯点源泄漏造成的水、空气污染实现同时、耦合模拟,模拟结果比单相模型计算的 结果更接近实验值,可见挥发性污染物水气迁移耦 合扩散模型较准确反映了污染物在水气交界面的传 质过程。

3)无量纲亨利常数是影响污染物耦合扩散的一 重要因素。无量纲亨利常数随环境温度变化大的污 染物的挥发作用受环境温度的影响也大。随无量纲 亨利常数的增加,污染物在水中的浓度受风速影响 是减弱的。

参考文献:

- [1] WESELY M L. Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models [J]. Atmospheric Environment, 1989, 23: 1293-1304.
- [2] MOOG D B, JIRKA G H. Air-water gas transfer in uniform channel flow [J]. Journal of Hydraulic Engineering, 1999, 125: 3-10.
- [3] BADE D L. Gas exchange at the air-water interface[J]. Encyclopedia of Inland Waters, 2009,26:70-78.
- [4] HARDT S, WONDRA F. Evaporation model for interfacial flows based on a continuum-field representation of the source terms [J]. Journal of Computational Physics, 2008,227(11):5871-5895.
- [5] MENG FAN, WEN DE-YONG, JAMES SLOAN. Modelling of air-water exchange of PCBs in the Great Lakes[J]. Atmospheric Environment, 2008, 42 (20): 4822-4835.
- [6] MENG FAN, ZHANG BAO-NING, PHILIP GBOR, et al. Models for gas/particle partitioning, transformation and air/water surface exchang of PCBs and PCDD/Fs in

CMAQ[J]. Atmospheric Environment, 2007, 41(39): 9111-9127.

- [7] 瑞恩 P,施瓦茨巴赫, 菲利普 M,等. 环境有机化学 [M]. 北京:化学工业出版社,2004: 563-566,598-602.
- [8] STEEMAN H J, TJOEN C, BELLEGHEM M VAN, et al. Evaluation of the different definitions of the convective mass transfer coefficient for water evaporation into air[J]. International Journal of Heat and Mass Transfer, 2009, 52:3757-3766.
- [9]尤学一,刘伟.两相流界面迁移得数值模拟[J].水动力 学研究与进展,2006,21(6):724-729. YOU XUE-YI, LIU WEI. Numerical simulation of interfacial flows[J]. Journal of Hydrodynamics, 2006, 21(6):724-729.
- [10] AFKHAMI S, ZALESKI S, BUSSMANN M. A meshdependent model for applying dynamic contact angles to VOF simulations [J]. Journal of Computational Physics, 2009,228(15):5370-5389.
- [11] CABOUSSAT A, FRANCOIS M M, GLOWINSKI R, et al. A numerical method for interface reconstruction of triple points within a volume tracking algorithm[J]. Mathematical and Computer Modelling, 2008, 48:1957-1971.
- [12] JOHN DOLBOW, STEWART MOSSO, JOSHUA ROBBINS, et al. Coupling volume-of-fluid based interface reconstructions with the extended finite element method [J]. Computer methods in applied mechanics and engineering, 2008,197:439-447.
- [13] LEONARD B P. Simple high-accuracy resolution program for convective modeling of discontinuities[J]. Int J Numer Meth Fluids, 1988, 8:1291-1318.
- [14] DARWISH M S. A new high-resolution scheme based on the normalize variable formulation[J]. Numer Heat Transfer, Part B 1993, 24:353-371.
- [15] DJAVARESHKIAN M H, REZA-ZADEH S. Application of normalized flux in pressure-based algorithm [J]. Computers & Fluids, 2007, 36: 1224-1234.
- [16] JASAK H, WELLER H G. High resolution NVD differencing scheme for arbitrarily unstructured meshes [J]. J Numer Methods Fluids. 1999.31:431-449.
- [17] 邹建锋,郑耀. 有界压缩 VOF 算法在界面流问题中的应用[J]. 浙江大学学报:工学版,2008,42(2):253-258.
 ZOU JIAN-FENG, ZHENG YAO. Application of bounded and compressed VOF method to interfacial flow[J]. Journal of Zhejiang University : Engineering Science,2008,42(2):253-258.
- [18] 赵宗升.环境流体力学[M].北京:北京大学出版社, 2009.

(编辑 王秀玲)