第34卷第5期

2012 年 10 月

doi:10.3969/j.issn.1674-4764.2012.05.008

高层钢管混凝土结构施工全过程数值模拟

刘 俊1,吴 杰1,罗晓群1,崔晓强2,张其林1

(1. 同济大学 土木工程学院,上海 200092;2. 上海建工集团 上海 200050)

摘 要:基于 CEB-FIP MC90 的混凝土时变模型,建立了按主从节点约束考虑钢管与混凝土共同工 作的钢管混凝土时变分析模型,提出了高层钢管混凝土结构施工全过程的数值模拟方法。对某高 层钢管混凝土结构进行了数值计算,计算中考虑了混凝土的收缩徐变效应和施工工序影响,与施工 过程的监测结果做了对比分析。研究表明,施工过程和收缩徐变对高层钢管混凝土结构影响很大, 实际结构在设计和施工中必须予以考虑。

关键词:钢管混凝土;高层结构;收缩徐变;施工全过程;分析模型;数值模拟方法 中图分类号:TU311 文献标志码:A 文章编号:1674-4764(2012)05-0050-07

Numerical Simulation on Whole Construction Process of High-Rise CFST Structures

LIU Jun¹, WU Jie¹, LUO Xiaoqun¹, CUI Xiaoqiang², ZHANG Qilin¹

College of Civil Engineering, Tongji University, Shanghai 200092, P. R. China;
 Shanghai Construction Group, Shanghai 200050, P. R. China)

Abstract: The time-changing analysis model for concrete filled steel tubes was established based on the timechanging concrete model of CEB-FIP MC90, in which the interaction between steel tube and concrete core was considered by the restraint conditions of master and slave nodes. The numerical simulation method was developed for analyzing the whole construction process of high-rise CFST structures. A real structure was taken as numerical example, in which the influence of concrete creep and shrinkage as well as construction process was considered. The results of numerical simulation are compared with those obtained from on-site monitoring. It is shown that the concrete creep and shrinkage as well as constructions. Key words: concrete filled steel tube; high-rise structures; creep and shrinkage; whole construction process; analysis model; numerical simulation method

建筑结构设计通常是以完整结构作为设计对象 的。然而实际结构是在经历了整个施工建造过程后 成型的。在这个过程中结构从无到有、材料性能也 随时间发生着变化。对于多层建筑,该区别造成的 影响不是很大,可不考虑。但高层建筑对微小变形 十分敏感,稍有不慎便可能引起内力过大,甚至造成 结构破坏。所以,高层结构设计必须进行施工过程 分析。施工过程分析属于慢速时变结构力学的范 畴,可以忽略动力效应而采用时间冻结法进行处 理^[1]。但必须考虑2方面的时变效应:一是材料的 收缩徐变、弹性模量和强度随施工过程(时间)发生 变化(主要针对混凝土)^[2-3];二是结构形状(刚度)随

收稿日期:2012-02-28

基金项目:国家 863 计划(2009AA04Z420);上海市科技攻关计划(09DZ1207704)

作者简介:刘俊(1983-),男,博士生,从事高层建筑结构理论研究,(E-mail)the_eugene@126.com。

吴杰(通信作者),男,副教授,博士,主要从事施工控制和数值研究,(E-mail)wj536@163.com。

施工过程发生变化。由于这 2 方面的时变效应,高 层结构的实际受力状态与基于完整结构的设计结果 相比会有较大差异^[4-10],忽略这样的差异将会导致 设计结果不安全。

高层结构中广泛采用的钢管混凝土构件是由钢 材和混凝土两种材料组成的,两者共同工作。对钢 管混凝土组合构件进行时变分析时必须考虑核心混 凝土时变特性对构件的影响,实现该模拟比较困难。 笔者提出了分别考虑混凝土材料和钢材、通过导入 主从节点约束使两者共同工作的钢管混凝土组合构 件分析模型,可以精确考虑混凝土材料的收缩徐变 及其对组合构件的作用效应,在此基础上提出了高 层钢管混凝土结构的施工全过程数值分析方法。

1 施工过程分析原理

完全模拟施工过程是比较困难的,很多学者提 出了基于不同假定的施工过程近似模拟方法^[11-12]。 文献[7]中提出的近似模拟施工过程的方法在中国 的高层结构设计软件中广泛应用。但该方法是取全 结构的刚度来计算,与实际施工过程的变结构变刚 度情况不符。笔者采用了比较接近施工实际的模拟 施工过程方法。把1个m层框架的荷载效应分析看 作是包含m个子结构的荷载效应分析,子结构层数 由1~m连续变化,每个子结构只承受相应的顶层 荷载。第*i*层的荷载效应是第*i*~m个子结构中该 层荷载效应的叠加。该方法与一般分析的区别见图 1和图 2^[13]。

图 2 分析结果

考虑施工过程的分析结果是考虑了结构随施工 进度变化和施工找平影响的叠加结果,如图 2(a)所 示。施工步骤 1)1 层受单位荷载后的位移为 1,2、3 层由于未被激活,对应位移为 0;2)将第 2 层建造到 设计标高,受荷后,1 层新增位移为 1,2 层位移为 2, 3 层由于未被激活,对应位移为 0;按上述过程完成 第 3 步,将各层位移叠加得到最终位移值。一般分 析结果见图 2(b):单位荷载作用在第 1 层时,由于 3 层构件同时处于激活状态,所以每层位移均为 1;单 位荷载作用在第 2、3 层产生的位移及叠加后的总位 移如图 2(b)所示。由 2 图分析结果的差异可以看 出分析时考虑施工过程的重要性。

2 混凝土时变模型

徐变是混凝土在持续荷载作用下的非弹性变 形,它对静定结构和组合结构有着重要影响。通常 结构最终的徐变量可达到弹性变形量的 2~3 倍,因 此混凝土时变特性对结构的影响将是巨大的。在施 工过程分析时,材料的时变模型是要首先确定的,它直 接影响到施工过程分析的准确性。笔者以 CEB-FIP MC90 的时变模型作为计算依据,采用按龄期调整的有 效模量法(AEMM法)建立了混凝土时变模型。

2.1 混凝土收缩徐变模型

CEB-FIP MC90 中混凝土收缩应变表达式为

 $ε_{cs}(t,t_s) = ε_{cso}\beta_s(t-t_s)$ (1) 式中: $ε_{cs}$ 为收缩应变; t_s 为开始考虑混凝土收缩时 的龄期; $ε_{cso}$ 为名义收缩系数; $β_s$ 为收缩随时间发展 的系数。

CEB-FIP MC90 中混凝土徐变应变表达式为

$$\varepsilon_{\rm cc}(t,t_0) = \frac{\sigma_{\rm c}(t_0)}{E_{\rm ci}}\varphi(t,t_0)$$
⁽²⁾

$$\varphi(t,t_0) = \varphi_0 \beta_c(t-t_0) \tag{3}$$

式中: ϵ_{cc} 为徐变应变; t_0 为开始加载时的混凝土龄 期; E_{ci} 为 28 d 龄期的混凝土弹性模量; φ 为徐变系 数; φ_0 为名义徐变系数; β_c 为加载后徐变随时间发 展的系数。

2.2 按龄期调整的有效模量法(AEMM)

在叠加原理和线性徐变假设条件下,总应变可 表示为式(4)^[14]。

$$\varepsilon(t) = \frac{\sigma(\tau_0)}{E(\tau_0)} [1 + \varphi(t, \tau_0)] + \int_{\tau_0}^t \frac{1}{E(\tau)} \frac{\mathrm{d}\sigma(\tau)}{\mathrm{d}\tau} [1 + \varphi(t, \tau)] \mathrm{d}\tau$$

$$(4)$$

设徐变应变 $\varepsilon_{c}(t) = \varepsilon(t) - \frac{\sigma(\tau_{0})}{E(\tau_{0})}$ 和徐变应力

 $\sigma_{c}(t) = \sigma(t) - \sigma(\tau_{0})$,假设混凝土弹性模量为常数, $E(\tau)$ 用常量 E 代替,则式(4)可表示为式(5)。

$$\varepsilon_{c}(t) = \frac{\sigma(\tau_{0})}{E}\varphi(t,\tau_{0}) + \frac{1}{E}\int_{\tau_{0}}^{t} \frac{\mathrm{d}\sigma_{c}(\tau)}{\mathrm{d}\tau} [1 + \varphi(t,\tau)]\mathrm{d}\tau$$
(5)

52

应用中值定理,引入老化系数 $\rho(t,\tau_0)$,令 $E_{\varphi} = \frac{E}{1 + \rho(t,\tau_0)\varphi(t,\tau_0)}$ 为按龄期调整的有效模量,可得到式(6)。

$$\varepsilon_{c}(t) = \frac{\sigma(\tau_{0})}{E}\varphi(t,\tau_{0}) + \frac{\sigma_{c}(t)}{E} [1 + \rho(t,\tau_{0}) \cdot \varphi(t,\tau_{0})] = \frac{\sigma(\tau_{0})}{E}\varphi(t,\tau_{0}) + \frac{\sigma_{c}(t)}{E_{o}}$$
(6)

按龄期调整有效模量法就是用老化系数来考虑 混凝土老化对最终徐变值的影响,实质是用积分中 值定理将徐变计算的积分方程转化为代数方程。

3 钢管混凝土时变模型

3.1 基本假定

在钢管混凝土的2种材料共同工作时,钢管和 核心混凝土都处于多向应力状态。在核心混凝土收 缩徐变的同时,钢管和混凝土内的应力相互影响。 因此,钢管混凝土的受力分析将是一个复杂问 题^[15]。为简化计算,作如下基本假定:1)混凝土与 钢管之间粘结可靠,协同工作;2)忽略钢管与混凝土 的径向作用力,核心混凝土按单轴受力分析;3)由于 钢管阻止了核心混凝土水分的丧失,所以其收缩可 以忽略。基于上述原理和假设,可以建立钢管混凝 土徐变模型^[16]。

3.2 钢管混凝土轴心受压构件的徐变计算模型

考虑钢管与核心混凝土共同工作,当在无新的 外力作用时,核心混凝土产生徐变,钢管混凝土截面 产生体系内应力重分布。当核心混凝土产生自由徐 变应变 ε^c,ε^c,为核心混凝土产生徐变后钢管的应变 增量,ε^{cl} 为钢管和混凝土的协同变形引起的核心混 凝土轴向应变恢复量,可得到式(7)。

 $\boldsymbol{\varepsilon}_{c}^{c} = \boldsymbol{\varepsilon}_{c}^{cl} + \boldsymbol{\varepsilon}_{s}^{c} \tag{7}$

因此,产生徐变后钢管的应变增量即为钢管混 凝土的实际徐变应变 ε_{sc},如式(8)所示。

 $\varepsilon_{s}^{c} = \varepsilon_{sc}^{c}$ (8) 由于忽略钢管与核心混凝土的径向作用力,则 $\sigma_{c}^{c}A_{c} + \sigma_{s}^{c}A_{s} = 0$ (9) 式中: σ_{c}^{c} 为核心混凝土因徐变而产生的应力增量; σ_{s}^{c} 为钢管因徐变而产生的应力增量。其中, $\varepsilon_{s}^{c} = \frac{\sigma_{s}^{c}}{E_{s}}$, 钢管混凝土含钢率 $\alpha = A_{s}/A_{c}$,代入(9)得 $\sigma_{c}^{c} = -\alpha E_{s}\varepsilon_{s}^{c}$ (10) 设核心混凝土初始应力为 σ_{0} ,则发生徐变后时 间 t 时的应力如式(11)。

$$\sigma_{c} = \sigma_{0} + \sigma_{c}^{c}$$
 (11)
在时间为 *t* 时,钢管混凝土上产生的徐变等于

当时核心混凝土上作用的应力与徐变度 c 的乘积,即

$$\boldsymbol{\varepsilon}_{\mathrm{sc}}^{\mathrm{c}} = \boldsymbol{\sigma}_{\mathrm{c}} \boldsymbol{c} \tag{12}$$

将式(8)、(10)、(11)代入式(12)得式(13)。

$$\varepsilon_{\rm sc}^{\rm c} = \frac{\sigma_0 c}{1 + \alpha E_{\rm s} c} \tag{13}$$

将式(13)带入式(10),由式(11)得式(14)。

$$\sigma_{\rm c} = \frac{\sigma_0}{1 + \alpha E_s c} \tag{14}$$

设钢管混凝土初始应变为 ε₀,则可得到式 (15)。

$$\boldsymbol{\varepsilon}^{t} = \boldsymbol{\varepsilon}_{0} + \boldsymbol{\varepsilon}_{ec}^{c} \tag{15}$$

基于上述理论,将钢管混凝土用钢管和混凝土 2个单元表示,并将2个单元的两端节点取为主从 约束节点,以实现在考虑混凝土单元徐变的同时实 现钢管单元和混凝土单元的协调工作。

3.3 基于构件时变模型的高层建筑数值模拟软件

基于上述徐变计算模型并结合有限元理论就可 模拟徐变对钢管混凝土的影响。钢管混凝土柱徐变 分析流程见图 3。

图 3 钢管混凝土徐变分析流程图

在上述钢管混凝土徐变模型的基础上,以 Visual C++和 ObjectARX 为工具,研发了基于构件时 变模型的高层建筑数值模拟软件。图 4 为软件架构 图,图 5 为软件主界面。软件可实现施工过程数据 的交互式输入、施工全过程的仿真分析、计算结果的 图形显示和文本查询等功能。施工全过程数值模拟 的具体流程见图 6。

图 4 软件架构图

图 5 主界面及各级菜单

图 6 施工过程模拟流程图

3.4 时变模型和模拟软件的数值验证

图 7 为一钢管混凝土柱施工过程示意图,柱直径 500 mm,钢管壁厚 15 mm,混凝土采用 C40,钢管采用 Q345,整个计算过程分 3 个工况:工况 CS1、 CS2 持续 30 d,工况 CS3 持续 180 d,各工况受荷情况如图 7 所示。图 8 为 2 层平面钢管混凝土框架施工过程示意图,施工工况、柱尺寸和材料同图 7 中的钢管混凝土柱,框架梁采用 300 mm×600 mm 的矩形截面,C40 混凝土,受荷情况如图 8 所示。为验证方法的正确性,将计算结果与 Midas 软件和桥梁博士软件作了对比分析。表 1 和表 2 分别为钢管混凝 土柱和 2 层框架的计算结果,从表中可看出,计算结果基本一致,从而验证了方法的正确性。MIDAS 徐 变分析采用的是分时步徐变叠加法(SSM法),笔者 和桥梁博士采用的是龄期调整有效模量法(AEMM 法)。SSM 法由于需要考虑应力历史,计算量较大; AEMM 法相对来说计算量较小。

图 7 钢管混凝土柱施工过程模型

图 8 2 层钢管混凝土框架施工过程模型

表 1 钢管混凝土柱分析结果对比 mm

节点	工况	竖向徐变变形		
		本文	桥梁博士	Midas
节点1	CS1	-0.170	-0.175	-0.161
	CS2	-0.343	-0.351	-0.319
	CS3	-0.457	-0.445	-0.437
节点 2	CS2	-0.321	-0.351	-0.315
	CS3	-0.497	-0.502	-0.506

表 2 2 层平面钢管混凝土框架分析结果对比 mm

节点	工况一	水	水平向徐变变形		竖向徐变变形	
		本文	桥梁博士	Midas	本文 桥梁博士 Midas	
节点 1	CS1	2.77	2.85	2.63	-0.161 - 0.165 - 0.151	
	CS2	6.89	7.12	6.58	-0.300-0.306 -0.279	
	CS3	9.70	9.52	9.55	-0.400-0.388 -0.382	
节点 2	CS2	10.56	11.40	10.53	-0.270-0.296 -0.434	
	CS3	17.54	17.57	18.11	-0.424-0.428-0.266	

4.1 工程概况

54

广州新电视塔位于广州市海珠区赤岗塔附近,塔 高 450 m,天线桅杆高 160 m,总建筑面积 114 054 m²。 广州新电视塔的结构体系为钢管混凝土外框筒和钢 筋混凝土核心筒组成的混合结构体系。其结构由 2 个向上旋转的椭圆形变化生成,1 个在基础平面, 1 个在 450 m 高的平面上,2 个椭圆彼此扭转 135°, 2 个椭圆扭转在腰部收缩变细。结构布置形式不对 称,构件在施工过程中受力状态复杂。因此,为确保 建造完成的结构和设计目标一致以及工程在整个施 工过程中的安全性,有必要对广州新电视塔进行施 工过程分析。

4.2 计算模型

本节建立了广州新电视塔的整体三维有限元模型,见图 9。钢管混凝土柱和钢梁采用梁单元,采用 C60 的混凝土和 Q345 的钢材。钢筋混凝土核心筒 和楼板采用板单元,其中核心筒采用 C60 的混凝土, 楼板采用 C35 的混凝土。所有截面尺寸按设计值 取,见图 10。

塔体的施工过程分析,按照施工流程,分析了 50个工况。每个工况中结构主要包括:外框筒(由 外环与柱组成)、混凝土核心筒和楼板。工况1为将 核心筒施工至46.2m;工况2至工况39为每个工 况将外框筒施工至一新环梁高度,同时核心筒向上 施工8.4m,让外框筒和核心筒始终保持40m左右 的高差,工况39时核心筒施工完毕;工况40至工况 50为每个工况将外框筒施工至一新环梁高度,直至 完工。在图11中简单列举一些施工工况。由于钢 管混凝土的徐变早期发展很快,5个月后徐变曲线 趋于水平,1a后徐变基本停止^[17]。故本模型分析 到施工完成后1000d为止。

4.3 计算结果与分析

4.3.1 钢管混凝土柱竖向层间位移 图 12 分析数 据对应于图 10 所示位置的钢管混凝土柱。由图 12 可知,考虑施工过程的分析结果与一般分析结果有 很大差异。考虑施工过程的层间最大位移值发生在 结构的中间部位,而一般分析的层间最大位移值发 生在结构的最上部。考虑施工过程的位移曲线在后 半段下降的原因是:笔者施工过程分析采用的是"分 步建模技术",即按施工步骤依次形成各施工阶段的 结构刚度矩阵并施加相应荷载,未激活构件的刚度 在整体刚度矩阵中并不出现,所以新激活构件的初 始位移为0;针对该算例,相当于第 i 阶段的荷载对 $i+1 \sim n$ 阶段新激活的构件不产生变形,这与实际 施工情况是相符的。由图 12(a)可见,施工刚完成 时钢管混凝土柱的徐变变形始终小于弹性变形,最 大的徐变变形和最大的弹性变形分别为 4.85 mm 和 22.83 mm;施工完成后 1 000 d 时(图 12(b)),徐 变变形有所增大,最大徐变变形为 11.57 mm。可 见,钢管混凝土的徐变变形量相对于弹性变形量较 小,但随着时间的增长徐变变形的影响会有所增大, 应给予一定的考虑。

4.3.2 核心筒竖向层间位移 图 13 分析数据对应 于图 10 所示位置的核心筒。由图 13 可知,核心混 凝土的分析结果与钢管混凝土柱的结果有较大不同 (此时收缩变形虽然存在,但收缩变形量相对于其他 变形量微乎其微,故忽略不计)。核心筒混凝土的徐 变变形量为弹性变形量的 3 倍左右。在施工完成 时,见图 13(a)。最大的徐变变形和最大的弹性变 形分别为 88.61、35.06 mm。在施工完成后1 000 d 第5期

时,见图 13(b)。最大徐变变形为 116.11 mm。可 见,核心筒在施工过程分析时必须考虑混凝土的徐 变,不然将导致分析结果误差太大。通过图 12 和图 13还可以发现,各层层间变形值差异较大,为了使 建成的实际结构与设计目标一致,应考虑逐层找平。

图 13 核心筒竖向层间位移曲线

4.3.3 钢管混凝土柱与核心筒层间位移差 由图 14 可知,一般分析结果的层间位移差比较小,最大 位移差为16.52 mm,不考虑徐变的施工过程分析结 果与一般分析结果较接近。而考虑徐变施工过程的 层间位移差较大。施工完成时,最大位移差为 96.35 mm,发生在结构中部。在施工完成后1 000 d 时,在趋势相同的情况下差值进一步增大,最大位移 差为 117.98 mm。可见,荷载长期效应的影响十分 大(该长期效应包括施工工期内的)。若不采取必要 措施,柱与核心筒之间的楼板在如此大的位移差的 影响下必将破坏。这对施工找平提出了要求,既要 使施工完成后的结构符合验收标准,又要考虑验收 后荷载长期效应的影响,应引起足够重视。

4.3.4 核心筒实测数据与数值模拟数据的对比 对结构进行施工过程分析的同时,对结构进行了施工 现场实测。传感器的布置图见图 15,传感器在核心筒 的布置图见图 16。图 17 为测点 1 在传感器 3 方向从 工况 29 到工况 38 的实测应变值推得的应力值,并将 其与分析结果对比。可知,实测值比模拟数值小。而 造成这种差异的原因较多,主要有以下几点:

图 14 钢管混凝土柱核心筒层间位移差曲线

图 15 应变花三向传感器布置图

0∟ 28 32 34 38 30 36 施工工况号 注:---数值模拟数据---实测数据

图 17 核心筒应力时程曲线

1)荷载误差:由于实际施工荷载十分复杂,带有 一定的随机性,与计算分析时的取值不会完全一致。

2)测量误差:由于采用振弦式应变计,外界环境 振动对实测值会造成一定影响。

3)模型失真:实际核心筒含有大量构造配筋,而 在分析时将其简化为单一混凝土材料,造成实测值 比模拟值小。

5 结 论

 提出了按主从节点约束考虑钢管与混凝土 共同工作的钢管混凝土时变分析模型,基于该模型 研制了高层钢管混凝土结构施工全过程的数值模拟 软件,算例表明软件具有较好的适用性。

2)收缩徐变使高层建筑结构产生较大的竖向 变形,必须对结构进行考虑收缩徐变的施工过程分析。相对于混凝土结构构件,钢管混凝土结构构件 的徐变变形较小,但仍应给予考虑,否则计算结果误 差较大。

3)数值计算结果表明钢管混凝土柱和核心筒 的竖向位移差很大。该差值会引起较大的附加弯矩 和附加剪力,在实际工程设计中应尽量考虑该影响。

 4)为实现设计目标和保证长期使用安全,高层 建筑施工时对结构应进行逐层找平,并应考虑到荷 载长期效应对结构的影响。

参考文献:

[1] 王光远. 论时变结构力学[J]. 土木工程学报,2000,33 (6):105-108.

WANG Guangyuan. On mechanics of time-varying structures [J]. China Civil Engineering Journal,2000,33 (6):105-108.

- [2] Kim J K, Han S H, Park Y D. Material properties of self-flowing concrete [J]. Journal of Materials in Civil Engineering, 2008, 9(11):244-248.
- [3] Altoubat S A, Lange A D. Creep, shrinkage, and cracking of restrained concrete at early age [J]. Materials Journal, 2006, 98(4):345-353.
- [4]方辉,沈蒲生.高层框架考虑施工过程和徐变收缩影响的受力分析[J].工程力学,2007,24(7):94-98.
 FANG Hui, SHEN Pusheng. Analysis of high-rise frame structures with construction process, creep and shrinkage effects [J]. Engineering Mechanics, 2007, 24 (7):94-98.
- [5]孙华华,赵昕,丁洁民,等.复杂钢框架核心筒连体高层 建筑施工过程分析[J].建筑结构,2009,39:221-224.
 SUN Huahua, ZHAO Xin, DING Jiemin, et al. Construction sequence analysis of skybridge connected complex steel frame core-wall tall building [J]. Building Structure,2009,39:221-224.

- [6] Hong D K, Willam K, Shing B, et al. Failure analysis of R/C columns using a triaxial concrete model [J]. Computers& Structures, 2007, 77(5):423-440.
- [7] Coronelli D, Gabriella M M. Modeling of shear behavior in reinforced concrete beams [J]. ACI Structural Journal,2006,103(3):372-382.
- [8] Mazzotti C, Savoia M. Experimental study of nonlinear creep of concrete at high stress level [J]. ACI Structural Journal, 2006, 103(2): 259-264.
- [9] Sharma R K, Maru S, Nagpal A K. Simplified procedure for creep and shrinkage effects in reinforced concrete frames [J]. Journal of Engineering Mechanics, 2007, 130 (10):1545-1550.
- [10] Bazant Z P, Cusatis G, Cedolin L. Temperature effect on concrete creep modeled by microprestress-solidification theory [J]. Journal of Engineering Mechanics, 2006, 130 (6):671-680.
- [11] 赵西安. 钢筋混凝土高层建筑结构设计[M]. 2 版. 北京:中国建筑工业出版社,2002.
- [12] 沈蒲生,方辉. 高层框架施工过程的模拟分析方法与近 似方法的比较[J]. 建筑结构,2006,36(2):48-50.
 SHEN Pusheng, FANG Hui. Analysis method of tall frame building considering construction process effect
 [J]. Building Structure,2006,36(2):48-50.
- [13] 北京迈达斯技术有限公司. MIDAS/Gen 分析设计 [M]. 2011.
- [14]肖汝诚.桥梁结构分析及程序系统[M].北京:人民交通出版社,2002.
- [15] Xiong D X, Zha X X. A numerical investigation on the behaviour of concrete filled steel tubular columns under initial stresses [J]. Journal of Constructional Steel Research, 2007, 63(5):599-611.
- [16] 张电杰,王元丰,雷扬.钢管混凝土轴心受压短柱徐变模型研究[J]. 土木工程学报(Sup),2010,43:246-251.
 ZHANG Dianjie, WANG Yuanfeng, LEI Yang. A new creep model for concrete filled steel tube columns under axial compression [J]. China Civil Engineering Journal (Sup.),2010,43:246-251.
- [17] 王元丰. 钢管混凝土徐变[M]. 北京:科学出版社,2006.

(编辑 王秀玲)