# 计算流体力学法臭氧接触池水力条件优化

袁蓉芳1,周北海1,施春红1,顾军农2

(1. 北京科技大学土木与环境工程学院 北京 100083;2. 北京自来水集团水质监测中心 北京 100085)

要:采用计算流体力学技术,模拟了北京某水厂臭氧接触池中水的流态分布及水力效率。通过流体停留时间分 布(RTD)的分析,得知臭氧接触池的 T<sub>10</sub>/HRT 为 0.466,短流现象明显,水力效率低。在臭氧接触池中增加导流板 后, $T_{10}$ /HRT 值可提高 20.38%,但  $T_{90}$ /HRT 高达 1.316,回流现象明显;设置横挡板,可将  $T_{10}$ /HRT 提高 15.88%, 同时  $T_{90}/HRT$  降至 0.821, RTD 更为集中, 流场更接近理想活塞流。因此, 增加横挡板有利于臭氧接触池水力效率 的提高。

关键词:计算流体力学;臭氧接触池;水处理;水力效率;停留时间分布

中图分类号:TU991.2

文献标志码:A

文章编号:1674-4764(2012)S1-0228-04

# Application of computational fluid dynamics for optimization of hydraulic efficiency of ozone contactor

YUAN Rongfang<sup>1</sup>, ZHOU Beihai<sup>1</sup>, SHI Chunhong<sup>1</sup>, GU Junnong<sup>1</sup>

(1. School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China; 2. Water Quality Monitoring Center, Beijing Waterworks Group, Beijing 100085, P. R. China)

Abstract: Computational fluid dynamics is used to simulate the hydraulic efficiency of the ozone contactor in A water plant in Beijing and to optimize the contactor by calculating the retention time distribution (RTD) of the fluid. The result shows that the value of  $T_{10}/\mathrm{HRT}$  of the existing contactor is 0.466, and the phenomenon of obvious short circuiting and backflow which result in low hydraulic efficiency exists in the contactor. After optimization, the value of  $T_{10}/HRT$  of the contactor in the presence of guide plates is 0.561, making the hydraulic efficiency increased by 20.38%. However, the value of  $T_{90}/HRT$  is 1.316, which means that the phenomenon of backflow existed. The value of  $T_{10}/HRT$  of the contactor in the presence of horizontal baffles is 0.540, making the hydraulic efficiency increased by 15.88\%, and the value of  $T_{90}/HRT$  reduces to 0.821. That means the concentration ratio of RTD increased, and the hydraulic efficiency of whole flow field is improved significantly in the presence of horizontal baffles.

Key words: computational fluid dynamics; ozone contactor; water treatment; hydraulic efficiency; retention time distribution

臭氧具有很强的氧化能力,可有效去除水中的有机污染 物,并对细菌和病毒(包括"两虫")具有很强的灭活能力[1-3]。 臭氧接触池(ozone contactor)是指将臭氧气体扩散到水中, 使臭氧与水接触并发生反应的处理构筑物。臭氧接触池的 水力效率是影响处理效果的主要因素之一,停留时间分布 (residence time distribution, RTD)是最重要的水力指标[4-5]。 常用的臭氧接触池水力效率优化研究方法,包括示踪实验法 和计算流体力学(computational fluid dynamics, CFD)模拟 法。通过示踪实验测定臭氧接触池的水力停留时间分布函 数,因受限于现场条件而无法实现[6],而通过 CFD 模拟,可精 确且直观地得到臭氧接触池内水流流态和速度的分布 情况[4-5,7-15]。

本文通过 CFD 模拟分析北京 A 水厂臭氧接触池内水流 流态及停留时间分布(retention time distribution, RTD)函 数,确定臭氧接触池的水力效率,提出实现理想活塞流的改

进方案。

## 模拟系统建立方法

该水厂臭氧接触池设计处理水量为  $1.5 \times 10^5 \text{ m}^3 \cdot \text{d}^{-1}$ , 设1座2格,每格宽5m,长29.2m,有效水深6m,超高1m, 进水口直径 0.9 m,出水口溢流至活性炭滤池。接触池内部 分若干个廊道,包括安装臭氧曝气头的曝气室和未安装臭氧 曝气头的反应室,剖面如图1所示。

# 1.1 网格划分

采用二维模拟,模型结构简单,规律性强,宜采用结构网 格划分,四边形单元,网格长度 50 mm,划分结果如图 2 所示。

### 1.2 模型选择

本研究涉及气液两相,宜采用多相流方法。在多相流的

研究中,目前几乎都采用欧拉—拉格朗日(Eulerian-Lagrangian)方法或欧拉—欧拉(Eulerian-Eulerian)方法。欧拉—拉格朗日方法对应的 CFD 模型为离散型模型(discrete phase model),欧拉—欧拉方法则对应 VOF(volume of fluid)模型、

混合物(mixture)模型和欧拉(Eulerian)模型。综合考虑研究 内容、物理模型以及数学模型的优缺点,本文选用欧拉模型, 采用标准 k-ε模型求解连续性方程及动量方程。

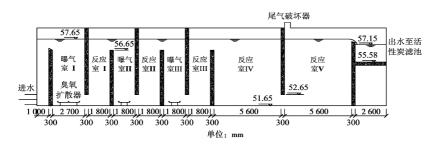



图 1 臭氧接触池剖面



图 2 臭氧接触二维网格

## 1.3 边界条件

# 1)进水口

进口处流速确定基于质量守恒原则,即单位时间内三维物理模型进入流场的质量(体积)等于单位时间二维数学模型进入流场的质量(体积)。臭氧接触池进水口采用速度入口(velocity-inlet)。假设速度分布均匀,得进水口流速0.1929  $\mathbf{m} \cdot \mathbf{s}^{-1}$ 。

### 2)出水口

出水口设置为压力出口(pressure-outlet)。出水口和外界空气接触,可认为相对压力为0。

## 3)进气口

气体人口设为质量人口(mass-flow-inlet)。采用 3 段曝气,曝气体积比为 2:1:1。设定臭氧投加量为 2 mg  $\cdot$  L $^{-1}$ ,接触时间 15.8 min,并按照臭氧发生器产生的臭氧体积分数 10%计算(质量分数为 14.3%),3 段气体质量流量分别为  $4.3\times10^{-6}$ ,3.  $2\times10^{-6}$  和  $3.2\times10^{-6}$  kg  $\cdot$  (m $^2$   $\cdot$  s) $^{-1}$ 。

### 4)出水口

出气口设置为压力出口。

## 5)壁面

除以上4种边界条件外,其余边界设定为壁面(wall)。一般而言,水泥的粗糙度为0.5,粗糙高度0.3~3.0 mm。本研究采用粗糙度0.5,粗糙高度1.0 mm。

## 1.4 迭代和收敛

要求连续性方程残差小于 0.01,其他小于 0.001,水力条件不随迭代次数的改变而变化,且进口流量和出口流量平衡(误差小于 0.001)时,方可确认计算结果收敛。

# 1.5 停留时间

使用欧拉模型,引入第三相(水)作为示踪剂,加入示踪剂1s后停止,考察出口处示踪剂浓度变化。

## 2 现有池型模拟

## 2.1 速度场

A 水厂现有池型的速度等值线云图及速度矢量线图如图 3 所示。

由图 3 可知,在池内的不同区域,水流速度差异较大,短流和回流现象均较严重。水流主要在靠近隔室的墙壁处流动,每个隔室都存在短流现象,长隔室中更为明显。在靠近外墙的部分有很多与流体速度逆向的回流,回流颗粒需要很长时间才能重新回到主流体的行进过程中。因此,短流和回流现象的存在均会影响水在流场内的停留时间<sup>[7]</sup>。

### 2.2 水力效率

为定量分析臭氧接触池的水力效率,下面采用非稳态模型进行考察。

理想反应器的基本类型包括完全混合流反应器 (continuous stirred tank reactor, CSTR) 和活塞流反应器 (plus flow reactor, PFR)。臭氧接触池构造相对复杂,包括主流区和回流区,其中主流区缺乏混合,类似于 PFR,而回流区则类似于 CSTR。采用  $T_{10}$  (10%示踪剂流出反应器所需时间)作为有效接触时间的考察指标。 $T_{10}$  可通过接触池的 RTD 获得,而 RTD 则受接触池的几何形状及运行状况的影响 [3]。通过考察  $T_{10}$  与水力停留时间 (hydraulic retention time, HRT) 的比值  $T_{10}$  /HRT,即可获得臭氧接触池的水力效率 [7]。接触池一般因存在死角、沟流、短流而偏离理想反应器,不可能达到理想的推流, $T_{10}$  /HRT 在 0.  $1\sim 1$ . 0之间 [4]。此外, $T_{50}$ 和  $T_{90}$  (50%和 90%示踪剂流出反应器所需时间)与 HRT 的比值  $T_{50}$ /HRT 和  $T_{90}$ /HRT 也是衡量水力特性的重要参数。 $T_{10}$ /HRT 表示短流程度,而  $T_{90}$ /HRT 代表回流程度,二者越接近 1,接触池越近似 PFR [11]。

230

图 3 现有池型下的流场

现有池型的 HRT 分布如图 4 所示。起初水的累计流出率较低,420~s 后开始大幅增长,600~s 后增长缓慢。  $T_{10}$  / HRT 为 0.466,说明短流现象明显,水力效率低。因此,需要对现有池型进行优化,以获得更好的水力效率。

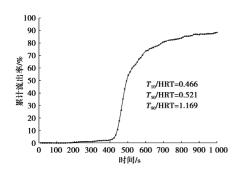



图 4 现有池型停留时间分布

# 3 水力效率优化

常用的臭氧接触池优化方法包括改变接触池的内部尺寸、增加穿孔墙、增设导流板以及增设横挡板<sup>[7]</sup>。前2种方法对原设计改动较大,可行性较低,而后2种方法不会对现有池型进行较大改动,可操作性强。

## 3.1 导流板

在各个隔室的连接处增加导流板,相当于增加"渐扩"段,流体在前进过程中逐渐上升,能够较均匀地分布在整个隔室内。导流板将流体分布2部分,这2部分流体应按其质量比,在后续的反应室内占有相同的空间。导流板安装在I、II、III 号曝气室和反应室的连接处,厚度0.2 m,前段横板长0.3 m,后端斜板高0.5 m,考察导流板与池底的距离和横板与斜板夹角对水力效率的影响。

### 1)池底距离

考察导流板与池底距离对 RTD 的影响,结果如图 5 所示。

图 5 表明,增加导流板可提高臭氧接触池的水力效率,使反应室左侧的空间得到更为充分的利用。导流板与池底距离对 RTD 有较明显的影响。当导流板与池底距离分别为 0.2、0.3 和 0.4 m 时, $T_{10}$ /HRT 分别为 0.473、0.561 和 0.502,其水力效率较原结构的 0.466 分别提高 1.50%、20.38%和 7.73%。 $T_{50}$ /HRT 和  $T_{90}$ /HRT 也有一定程度的

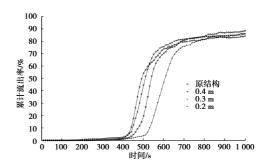



图 5 导流板位置对水力效率的影响

提高。导流板与池底距离为 0.3 m 时,水力效率最高。其原因为,二者距离为 0.3 m 时,水流分布更为均匀,接触池内空间得到了更好的利用。因此,选择导流板与池底的距离为 0.3 m。

# 2)导流板夹角

考察导流板夹角对 RTD 的影响,结果如图 6 所示。

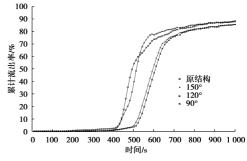



图 6 导流板夹角对水力效率的影响

图 6 表明,导流夹角对臭氧接触池的水力效率存在影响。夹角过大或过小都会降低接触池的水力效率。当导流板夹角分别为  $150^\circ$ 、 $120^\circ$ 和  $90^\circ$ 时, $T_{10}$ /HRT 相应地为0. 549、0. 561 和 0. 468,其水力效率分别提高 17. 81%、20. 38% 和 0. 86%。导流板夹角为  $90^\circ$ 时,导流板上方水流量极低,不能起到很好的分流作用,故水力效率变化不大。夹角为  $120^\circ$ 水力效率最好。因此,导流板最优夹角为  $120^\circ$ 。

但是,加入导流板后, $T_{50}$ /HRT 和  $T_{90}$ /HRT 也有一定程度的提高,导流板与池底距离 0.3 m,夹角  $120^{\circ}$ 时, $T_{90}$ /HRT 高达 1.316,会增大池中水的回流,不利于气液传质,故考虑改变优化方式,通过增设横挡板优化接触池水力条件。

## 3.2 横挡板

#### 1)单挡板

横挡板长度是影响水力效率的一个重要因素。挡板设置过短,会在拐角处造成较大程度的短流;挡板设置过长,拐角处的过流断面过窄,流体流速增加,也会增加流体的紊流程度,同样不利于气液传质。

为不影响曝气室内曝气效果,横挡板加在反应室内。水流更靠近右侧挡板,因此横挡板加在右侧池壁上。反应室 I、II和III的挡板向下,安装横挡板的位置应离自由液面近一点;反应室IV的挡板向上,横挡板位置应离池底进点,这样可使改变流向后的水有较大的空间流动。

反应室 I、Ⅱ和Ⅲ内的横挡板长 0.9 m,安装在距离池底 3 m处;反应室 IV内的横挡板长 2.8~4.7 m,安装在距离池底 2 m处。反应室 V 距离出口较近,不安装横挡板。所有挡板厚 20 cm。反应室 IV 内横挡板长度对 HRT 的影响如图 7 所示。

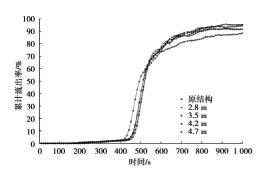



图 7 单挡板下挡板长度对水力效率的影响

由图 7 可知,当反应室 IV 内挡板长度分别为 2.8、3.5、4.2 和 4.7 m 时, $T_{10}$ /HRT 分别为 0.489、0.492、0.496 和 0.502,较优化前提高 4.94%、5.58%、6.44%和 7.73%;而  $T_{90}$ /HRT 有所降低,分别降至 0.848、0.829、0.791 和0.808,降低较晚离开流场的颗粒的停留时间,RTD 更为集中,水力效率得到优化。接触池的  $T_{10}$ /HRT 随挡板长度的增加而增大,但  $T_{10}$ /HRT 变化较小,水力条件优化不明显,故考虑增加挡板数量。

## 2)三挡板

反应室 I、II 、III 和 IV 内的右挡板分别安装在距离池底 1.5 和 4.5 m处,左挡板安装在距离池底 3.0 m处;反应室 I、III 和 III 内的横挡板长 0.9 m,反应室 IV 内的横挡板长 2.8 ~4.7 m。反应室 IV 距离出口较近,不安装横挡板。所有挡板厚 20 cm。反应室 IV 内横挡板长度对 HRT 的影响如图 8 所示。

由图 8 可知,当反应室  $\mathbb{N}$  内挡板长度分别为 2. 8、3. 5、4. 2和 4. 7 m 时, $T_{10}$ /HRT 分别为 0. 508、0. 521、0. 540 和 0. 544,提高了 9. 01%、11. 80%、15. 88%和 16. 74%,水力效率得到优化; $T_{90}$ /HRT 有所降低,分别降至 0. 833、0. 846、0. 821和 0. 810,RTD 更为集中,水力效率得到优化。由于挡板长 4. 7 m 时,水力效率较 4. 2 m 增加不多,但挡板过长会使得池内体积减小,因此官采用 4. 2 m。

此外,增加挡板的数量能够显著提高接触池的长宽比, $T_{10}/\mathrm{HRT}$  值明显升高,故采用三挡板,反应室 $\mathbb{N}$  内挡板长度

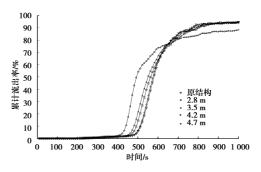



图 8 三挡板下挡板长度对水力效率的影响

4.2 m,这样可获得最好的优化效果。

# 4 结论

1) A 水厂臭氧接触池现有池型的短流现象较明显,水力效率较低。

2)增加导流板可提高臭氧接触池的水力效率, $T_{10}/HRT$ 有较大提高,但  $T_{90}/HRT$  过高,回流现象明显。

3)增加横挡板可提高臭氧接触池的水力效率。在三挡板的情况下,优化反应室的尺度可使流场更接近理想活塞流。

### 参考文献:

- [1] von Gunten U. Ozonation of drinking water: Part I. oxidation kinetics and product formation[J]. Water Research, 2003, 37
- [2] Von Gunten U. Ozonation of drinking water: Part II. disinfection and by-product formation in presence of bromide, iodide or chlorine[J]. Water Research, 2003, 37(7): 1469-1487.
- [3] 于玉娟, 尹军, 张小雨,等. 饮用水中"两虫"的危害及其去除灭活[J]. 吉林建筑工程学院学报, 2008, 25(2): 15-17. YU Yujuan, YIN Jun, ZHANG Xiaoyu, et al. Harmfulness and removal of Cryptosporidium and Giardia in drinking water [J]. Journal of Jilin Architectural and Civil Engineering Institute, 2008, 25(2): 15-17.
- [4] Huang T H, Brouckaert C J, Pryor M, et al. Application of computational fluid dynamics modelling to an ozone contactor [J]. Water SA, 2004, 30(1): 51-56.
- [5] Wols BA, Uijttewaal WSJ, Rietveld LC, et al. Residence time distributions in ozone contactors [J]. Ozone Science & Engineering, 2008, 30; 49-57.
- [6] 刘文君,崔磊. 应用计算流体力学优化清水池水力效率[J]. 中国给水排水,2005,21(5):1-5.

  LIU Weijun, CUI Lei. Application of computational fluid dynamics for optimization of hydraulic efficiency of clearwell [J]. China Water & Wastewater, 2005, 21(5):1-5.
- [7] 缪佳, 李继, 张金松,等. CFD 在臭氧接触系统优化中的应用 [J]. 中国给水排水, 2006, 22(10): 46-49. MIAO Jia, LI Ji, ZHANG Jinsong, et al. Application of computation fluid dynamics to optimization of ozone contactor[J]. China Water & Wastewater, 2006, 22(10): 46-49.

(下转第 257 页)

- [3]催振河,刘普增.降低沥青混合料加热成本的途径[J].路面机械与施工技术,2006,23(12):19-24
- [4]徐世法. 高节能低排放型温拌沥青混合料的技术现状与应用前景[]]、公路,2005,(7):195-197.
- [5] 聂文志. 废沥青路面旧料再生技术应用[J]. 石油工程建设, 2006,32(3),23-25.
- [6]程玲, 闫国杰, 陈德珍,等. 温拌沥青混合料摊铺节能减排效果 定量化研究[J]. 环境工程学报,2010,4(9):2151-2155.
- [7] Birgisdóttir H, Bhander G, Hauschild M Z, et al. Life cycle assessment of disposal of residues from municipal solid waste incineration: recycling of bottom ash in road construction or landfilling in Denmark evaluated in the ROAD-RES mode l[J]. Waste Management, 2007, 27(4):75-84.
- [8] PRé Consultants. SimaPro LCA Software. [EB/OL]. [2009]. http://www.pre.nl/simapro/. Accessed on October 30, 2010
- [9] PE International. Gabi Software. [EB/OL]. [2009]. http://www.gabi-software.com/. Accessed on October 30, 2010.
- [10] 耿翠洁. 道路工程中再生利用垃圾焚烧炉渣、废旧水泥混凝土的生命周期评价[D]. 上海:同济大学,2011.
- [11] Hauschild M, Jeswiet J, Alting L. From life cycle assessment to sustainable production: status and perspectives [J]. CIRP Annals-Manufacturing Technology, 2005, 54(2): 1-21
- [12] 陈德珍, 耿翠洁, 孙文洲, 等. 焚烧炉渣集料用于道路铺筑的节能 减排定量[J]. 建筑材料学报, 2011, 14(1):71-77.

(编辑 吕建斌)

### (上接第 257 页)

- [8] Phares D E, Rokjer D M, Crossley I A, et al. Modeling and validating the effective hydraulic detention time for a 10 mgd ozone contactor at the Lake Washington Surface Water Treatment Plant, Melbourne, Florida [J]. Ozone Science & Engineering, 2009, 31: 262-276.
- [9] 森冈崇行, 汪兆康. 采用模拟系统设计臭氧接触池[J]. 中国给水排水, 2006, 22(2): 49-51.

  MORIOKA T, WANG Zhaokang. Use of simulation system for design of ozone contact tank[J]. China Water & Wastewater, 2006, 22(2): 49-51.
- [10] Ta C T, Hague J. A two-phase computational fluid dynamics model for ozone tank design and troubleshooting in water treatment[J]. Ozone Science & Engineering, 2004, 26: 403-411.
- [11] 金俊伟, 刘文君, 刘丽君,等. 影响清水池 t10/T 值的因素试验研究[J]. 给水排水, 2004, 30(12): 36-39.

  JIN Junwei, LIU Weijun. LIU Lijun, et al. Study on the influencing factors on t10/T in clear water tank[J]. Water & Wastewater Engineering, 2004, 30(12): 36-39.

- [12] Zhang J P, Huck P M, Anderson W B, et al. A computational fluid dynamics based integrated disinfection design approach for improvement of full-scale ozone contactor performance [J]. Ozone Science & Engineering, 2007, 29: 451-460.
- [13] Zhang J P, Huck P M, Stubley G D, et al. Application of a Multiphase CFD Modelling approach to improve ozone residual monitoring and tracer testing strategies for full-scale drinking water ozone disinfection processes[J]. Journal of Water Supply Research and Technology-aqua, 2008, 57(2): 79-92.
- [14] Audenaert W T M, Callewaert M, Nopens I, et al. Full-scale modelling of an ozone reactor for drinking water treatment[J]. Chemical Engineering Journal, 2009, 157(2-3): 551-557.
- [15] Kulkarni A A, Ekambara K, Joshi J B. On the development of flow pattern in a bubble column reactor: experiments and CFD [J]. Chemical Engineering Science, 2007, 62(4): 1049-1072.

(编辑 薛婧媛)