第35卷第4期

2013年8月

doi:10.11835/j.issn.1674-4764.2013.04.011

基于广义梁理论的非线性材料薄壁 受压构件屈曲荷载计算方法

朱浩川1,姚 谏2,1

(1. 浙江大学结构工程研究所,杭州 310058;2. 浙江树人大学城建学院,杭州 310015)

摘 要:提出适用于非线性材料的广义梁理论屈曲荷载计算方法,并对不锈钢薄壁受压构件屈曲荷 载进行计算验证。通过定义材料非线性应力-应变关系和瞬时弹性模量,对传统线弹性广义梁理论 进行修正,建立非线性材料薄壁构件受压屈曲荷载计算方法,推导不锈钢薄板受压局部屈曲、冷弯 薄壁不锈钢卷边槽形柱畸变屈曲及箱形不锈钢长柱弯曲屈曲荷载计算公式,并与既有试验数据对 比。经验证,线弹性分析方法不适用于不锈钢材料;提出的修正GBT 法具有较高精度,且本构关系 采用变形法则结果偏于安全,可用于不锈钢等非线性金属材料薄壁构件受压屈曲荷载的确定,为研 究和设计提供理论指导。

关键词:冷弯薄壁不锈钢;广义梁理论;非线性材料;受压构件;屈曲荷载 中图分类号:TU973.13 文献标志码:A 文章编号:1674-4764(2013)04-0068-11

GBT-based Buckling Loads Formula of Non-linear Thin-walled Compressed Members

Zhu Haochuan¹, Yao Jian^{2,1}

(1. Institute of Structural Engineering, Zhejiang University, Hangzhou 310058, P. R. China;

2. College of Urban Construction, Zhejiang Shuren University, Hangzhou 310015, P. R. China)

Abstract: A buckling loads formula based on Generalised Beam Theory (GBT) was proposed, which could be used in non-linear elastic metallic materials thin-walled compressed members, such as stainless steel. By introducing non-linear stress-strain relations and instantaneous elastic modulus, the modifications were incorporated in the conventional GBT, and the expressions were formulated to calculate buckling loads of stainless steel members buckling in local, distortional and global modes. Compared with the existed test results, it is shown that linear elastic method cannot deal with stainless steel, while the results of proposed method are much more reliable. Moreover, the modified GBT method with deformation plasticity theories produces safer results, which could be used in determining buckling loads of non-linear metallic materials thin-walled members in compression, as well as structural design and further researches.

Key words: cold-formed thin-walled stainless steel; generalised beam theory; non-linear materials; compressed members; buckling loads

不锈钢材料具有华丽的外观、优异的抗腐蚀性 能、良好的力学和工艺性能、较高的比强度与比刚 度、较低的维护费用等诸多优点,在建筑结构领域已 获得较广泛的应用,如广州国际会展中心不锈钢屋

收稿日期:2012-10-04

基金项目:教育部博士学科点专项科研基金(博导类)(J20120118);浙江省"十二五"省高校重点学科-结构工程 作者简介:朱浩川(1986-),男,博士生,主要从事钢结构及结构稳定研究,(E-mail) zhuhaochuan@hotmail.com。 姚谏(通信作者),男,教授,博士生导师,(E-mail) yaojian58@gmail.com。

面板、天津港四号卡子门不锈钢空间网架结构等,结 构新颖,造型美观,具有显著的经济效益与社会效 益^[1]。受材料造价或建筑造型需要等因素影响,不 锈钢通常被加工成薄壁构件并冷弯至各种形状,此 类冷弯薄壁构件的稳定问题较突出,在结构设计时 必须谨慎考虑。

与普通碳素结构钢相比,不锈钢在化学成分上 增加铬(Cr)和镍(Ni)等合金元素使其耐腐蚀性能得 到极大改善^[2],在材料受力性能方面亦表现出显著 不同:不锈钢材料没有类似普通碳素钢的屈服平台, 其应力-应变曲线表现为典型的非线性特征,并具有 低比例极限和良好的应变硬化性能^[3]。这也就意味 着即使不锈钢薄壁构件失稳时应力(应变)水平较 低,材料也极可能处于非线性阶段,其屈曲性能将受 瞬时弹性模量控制并表现出相应非线性特征。处理 此类问题需构建三维本构关系,运用荷载增量法确 定平衡路径,最终得到构件临界屈曲应力^[4-5],与弹 性稳定分析相比有较大区别且更加复杂。目前中国 关于不锈钢薄壁构件稳定性能研究较少,缺乏科学 的理论分析和设计指导,极大阻碍了不锈钢结构的 应用与发展。

本文基于广义梁理论(Generalised Beam Theory,以下简称GBT)基本原理针对不锈钢材料 进行修正,根据流动法则、变形法则定义其瞬时弹性 模量,利用 Quach 模型定义其非线性应力应变关 系,并以荷载增量形式给出修正GBT 平衡方程、边 界条件及特征值计算公式,最后将提出的修正GBT 法计算结果与试验结果进行对比验证。需要说明的 是,受瞬时弹性模量影响,计算包含迭代过程,需借 助软件(Maple、C++或 Matlab)完成,因此提出公 式严格来讲属于准解析的计算公式。

1 非线性材料 GBT 计算公式

1.1 传统 GBT 的基本原理

传统 GBT 理论主要用于线弹性薄壁构件稳定性能分析,按以下步骤进行^[6-9]:

1)截面分析。构件截面划分为连续折板,屈曲 模态分解为一系列截面基本变形模态的线性组合, 根据弗拉索夫假设和各基本模态单位翘曲、横向位 移构造位移函数,计算截面刚度系数矩阵。

2)构件弹性稳定分析。考虑构件的长度和边界 约束情况,建立 GBT 平衡微分方程和边界条件,利 用有限差分法、有限元法或伽辽金法求解此特征值 问题,最终通过线性组合求得此构件屈曲应力及相 应屈曲模态[10-11]。

目前已有依据 GBT 理论编写的稳定分析程序 GBTUL^[12],计算精确迅速,成为继有限条法、有限 元法后研究人员处理薄壁构件弹性稳定问题的主要 计算方法,被科学研究和工程设计领域广泛采用。 然而,传统 GBT 理论只能用于构件弹性稳定分析, 对于非线性材料的稳定问题尚不能予以有效解决。 Goncalves 和 Camotim 利用 GBT 法对不锈钢薄壁 构件屈曲性能展开研究^[13],得到矩形薄板、C 形卷边 截面和矩形闭口截面构件在均匀受压时的屈曲模态 和稳定曲线,但其本构方程采用 Rasmussen 模型, 此模型经证实不能准确反映不锈钢材料应力-应变 关系^[3],且文献[13]中的 GBT 公式缺少必要推导过 程,不同模态下构件屈曲应力计算过程不明确,结果 缺乏试验数据验证。本文基于传统 GBT 理论及 Goncalves 和 Camotim 初步研究成果对 GBT 方法 进行修正,使其适用于非线性材料构件的屈曲性能 分析。

1.2 应力-应变关系模型

不锈钢是典型的非线性材料,应力-应变关系模型精确与否对确定本构关系有着至关重要的影响。 这方面的研究成果较为丰富,其中 Quach 等人提出 的三段式模型^[14]能够准确反映不锈钢材料的应力-应变关系,是目前可供选用的最佳应力-应变关系模型^[3]。本文选用该模型描述不锈钢材料的应力-应 变关系,即:

$$\boldsymbol{\varepsilon} = \begin{cases} \frac{\sigma}{E_0} + 0.002 \left(\frac{\sigma}{\sigma_{0,2}}\right)^n, & \sigma \leq \sigma_{0,2} \\ \frac{\sigma - \sigma_{0,2}}{E_{0,2}} + \left[0.008 + (\sigma_{1,0} - \sigma_{0,2}) \left(\frac{1}{E_0} - \frac{1}{E_{0,2}}\right)\right] \\ \left(\frac{\sigma - \sigma_{0,2}}{\sigma_{1,0} - \sigma_{0,2}}\right)^{n'_{\text{state}}} + \boldsymbol{\varepsilon}_{0,2}, & \sigma_{0,2} < \sigma \leq \sigma_{2,0} \\ \frac{\sigma - a}{b + \sigma}, & \sigma > \sigma_{2,0} \end{cases}$$

式中: E_0 为初始弹性模量; $\sigma_{0.2}$ 为条件屈服极限;n为硬化指数; $\sigma_{0.1}$ 为材料比例极限; $\sigma_{1.0}$ 、 $\sigma_{2.0}$ 为残余 应变等于 1.0%、2.0%时的应力; $\epsilon_{0.2}$ 、 $E_{0.2}$ 分别为应 力等于 $\sigma_{0.2}$ 时材料的应变和切线弹性模量; $n'_{0.2.1.0}$ 为描述 $\sigma_{0.2}$ 和 $\sigma_{1.0}$ 间的应变硬化指数;a、b 为当应力 大于 $\sigma_{2.0}$ 时的线性系数。以上各参数可通过材料试 验或 Quach 提出的计算公式求得^[14]。

1.3 瞬时弹性模量

传统 GBT 理论采用弹性模量矩阵描述材料各 方向本构关系,弹性模量矩阵在计算过程中保持不 70

变。然而,非线性材料的应力应变呈非线性关系,随着应变的发展,弹性模量不断折减,构件刚度不断退化,固定的弹性模量矩阵不能反映材料真实本构关系。因此,需将弹性模量表达为应力(应变)的函数,以反映非线性材料在特定应力(应变)状态下的本构关系,即"瞬时弹性模量"。通过定义瞬时弹性模量 矩阵对 GBT 法截面分析、构件稳定分析进行修正, 使其能够正确描述构件屈曲状态,并最终根据平衡 方程求得屈曲应力。本文基于小应变弹塑性理论确 定材料瞬时弹性模量 \dot{E}_{ij} ,假设材料屈服面服从 Mises 屈服条件,采用 J_2 流动法则^[15]和 J_2 变形法则^[16]2 种 理论的瞬时弹性模量 \dot{E}_{ij} 中各分量表达式为:

 J_2 流动法则:

$$\begin{cases} \dot{E}_{11} = \frac{(\Lambda_{\rm T} + 3)E_0}{(5 - 4\nu)\Lambda_{\rm T} - (1 - 2\nu)^2} \\ \dot{E}_{22} = \frac{4\Lambda_{\rm T}E_0}{(5 - 4\nu)\Lambda_{\rm T} - (1 - 2\nu)^2} \\ \dot{E}_{12} = \bar{E}_{21} = \frac{(4\nu + 2\Lambda_{\rm T} - 2)E_0}{(5 - 4\nu)\Lambda_{\rm T} - (1 - 2\nu)^2} \\ \dot{E}_{33} = 2G = \frac{E_0}{1 + \nu} \end{cases}$$
(2)

J2 变形法则:

$$\begin{cases} \dot{E}_{11} = \frac{(\Lambda_{\rm T} + 3\Lambda_{\rm S})E_{\rm o}}{(2 + 3\Lambda_{\rm S} - 4\nu)\Lambda_{\rm T} - (1 - 2\nu)^2} \\ \dot{E}_{22} = \frac{4\Lambda_{\rm T}E_{\rm o}}{(2 + 3\Lambda_{\rm S} - 4\nu)\Lambda_{\rm T} - (1 - 2\nu)^2} \\ \dot{E}_{12} = \dot{E}_{21} = \frac{(4\nu + 2\Lambda_{\rm T} - 2)E_{\rm o}}{(2 + 3\Lambda_{\rm S} - 4\nu)\Lambda_{\rm T} - (1 - 2\nu)^2} \\ \dot{E}_{33} = \frac{2E_{\rm o}}{2\nu - 1 + 3\Lambda_{\rm S}} \end{cases}$$
(3)

式中: G 和 ν 分别为剪切模量和泊松比; Λ_{T} 和 Λ_{s} 为 材料切线和割线刚度比,即 $\Lambda_{T} = E_{0}/E_{T}$ 、 $\Lambda_{s} = E_{0}/E_{s}$,其中 E_{T} 为切线刚度, E_{s} 为割线刚度。

将瞬时弹性模量表达为 $E_{\rm T}$ 和 $E_{\rm s}$ 的函数,建立其 与应力(应变)间的关系,以反应不同应力状态下非线 性材料的本构关系。根据 Quach 模型描述的不锈钢材 料应力-应变关系, $E_{\rm T}$ 和 $E_{\rm s}$ 的计算式为:

$$E_{\rm T} = \frac{{\rm d}\sigma}{{\rm d}\varepsilon} = \left\{ \begin{array}{l} \frac{1}{E_{\rm o}} + \frac{0.002n\sigma^{n-1}}{\sigma_{\rm 0.2}^{n}}, \quad \sigma \leqslant \sigma_{\rm 0.2} \\ \left[\frac{1}{E_{\rm o}} + n'_{\rm 0.2.1.0} \left(\frac{0.008}{\sigma_{\rm 1.0} - \sigma_{\rm 0.2}} + \frac{1}{E_{\rm o}} - \frac{1}{E_{\rm 0.2}} \right) \cdot \\ \left(\frac{\sigma - \sigma_{\rm 0.2}}{\sigma_{\rm 1.0} - \sigma_{\rm 0.2}} \right)^{n'_{\rm 0.2.1.0} - 1} \right]^{-1}, \quad \sigma_{\rm 0.2} < \sigma \leqslant \sigma_{\rm 0.2} \\ \frac{(\sigma + b)^{2}}{\sigma + b}, \quad \sigma > \sigma_{\rm 0.2} \end{array} \right.$$
(4)

$$E_{\rm s} = \frac{\sigma}{\varepsilon} = \left\{ \begin{cases} \frac{1}{E_0} + \frac{0.002n\sigma^{n-1}}{\sigma_{0.2}^n}, & \sigma \leqslant \sigma_{0.2} \\ \sigma \left\{ \frac{\sigma - \sigma_{0.2}}{E_{0.2}} + \left[0.008 + (\sigma_{1.0} - \sigma_{0.2}) \left(\frac{1}{E_0} - \frac{1}{E_{0.2}} \right) \right] \right\} \\ \left\{ \frac{\sigma - \sigma_{0.2}}{\sigma_{1.0} - \sigma_{0.2}} \right\}^{n'_{0.2,1,0}} + \varepsilon_{0.2} \right\}^{-1}, & \sigma_{0.2} < \sigma \leqslant \sigma_{0.2} \\ \frac{b\sigma + \sigma^2}{\sigma - a}, & \sigma > \sigma_{2.0} \end{cases}$$
(5)

由式(2)~(5)可看出, *E*_T和*E*_s由应力水平决定, 故瞬时弹性模量与施加荷载有关。

1.4 平衡微分方程及边界条件推导

屈曲问题是一个初应力问题,可以应用初应力 问题的变分原理加以研究。物体屈曲时,被认为是从 原来平衡形式变化到临近的另一形式的位形,在屈 曲过程中外荷载保持不变^[17],处理屈曲问题的关键 就是找到这一"临界位形"。在不同荷载水平下非线 性材料本构关系亦不相同,因此临界位形必须满足 荷载增量形式下的平衡条件。综上,临界平衡状态采 用虚功原理的增量形式描述,以同时考虑瞬时弹性 模量和荷载增量,表达如下:

$$\delta \dot{W} = \delta \dot{W}_{\rm E} + \delta \dot{W}_{\rm I} = 0 \tag{6}$$

式中: $\delta \dot{W}$ 为虚功增量; $\delta \dot{W}_{1}$ 和 $\delta \dot{W}_{E}$ 为内力虚功增量。与传统GBT法相同,构件截面 看作连续折板,设每块板的纵向、横向、厚度方向坐 标为x、s、z,相应位移为u、v、w,如图1所示。本文考 虑均匀受压导致构件屈曲的情况,施加外荷载仅为 均匀压应力 $\sigma_{xx} = -P/A(P$ 为轴向荷载,A为构件 横截面积),内力、外力虚功增量可简化为以下形式:

$$\delta \dot{W}_{\rm E} = \int_{V} \sigma_{xx} \, \delta \dot{\boldsymbol{u}}_{,x} \, \mathrm{d}V = - \int_{V} \frac{P}{A} \delta \dot{\boldsymbol{u}}_{,x} \, \mathrm{d}V \qquad (7)$$

$$\delta \dot{W}_{I} = - \int_{V} (\sigma_{ij} + \dot{\sigma}_{ij}) \, \delta \dot{\boldsymbol{\varepsilon}}_{ij} \, \mathrm{d}V =$$

$$\int_{V} \left(-\frac{P}{A} \delta \dot{\boldsymbol{\varepsilon}}_{xx}^{\rm M} + \bar{\sigma}_{ij} \, \delta \bar{\boldsymbol{\varepsilon}}_{ij} \right) \, \mathrm{d}V \qquad (8)$$

式中: $u_{,x}$ 为纵向位移增量u 对x 求一次偏导的张量 表达形式; σ_{ij} 为应力状态(即初应力); σ_{ij} 为应力增 量: ϵ_{ij} 为应变增量,并将 ϵ_{ij} 分解为弯曲应变增量 ϵ_{ij}^{B} 和膜应变增量 ϵ_{ij}^{M} 。因构件均匀受压,膜应变增量Q 存在x方向分量 ϵ_{xx}^{M} ,满足以下关系^[13]:

$$\delta \dot{\boldsymbol{\varepsilon}}_{xx}^{M} = \delta \dot{\boldsymbol{u}}_{,x} + \frac{\delta (\dot{\boldsymbol{v}}_{,x} + \dot{\boldsymbol{w}}_{,x})}{2} \tag{9}$$

式中: $\dot{v}_{,x}$ 和 $\dot{w}_{,x}$ 分别为横向位移增量 \bar{v} 和厚度方向 位移增量 \bar{w} 对x求一次偏导的张量表达形式。把式 (7)~(9)代人式(6),可得非线性材料受压屈曲临 界平衡状态的虚功原理增量表达式:

$$\delta \dot{W} = -\int_{V} \frac{P}{A} \delta \dot{\boldsymbol{u}}_{,x} dV - \int_{V} \left(-\frac{P}{A} \delta \dot{\boldsymbol{e}}_{,x}^{M} + \dot{\sigma}_{ij} \delta \dot{\boldsymbol{e}}_{,ij} \right) dV =$$
$$\int_{V} \left(\frac{P}{A} \delta \left(\dot{\boldsymbol{v}}_{,x} + \dot{\boldsymbol{w}}_{,x} \right) - \dot{\sigma}_{ij} \delta \dot{\boldsymbol{e}}_{,ij} \right) dV = 0$$
(10)

图 1 GBT 法截面坐标系及位移

如前文所述,将应力(应变)增量 $\sigma_{ij}(\epsilon_{ij})$ 分解为 弯曲应力(应变)增量 $\sigma_{ij}^{B}(\epsilon_{ij}^{B})$ 和膜应力(应变)增量 $\sigma_{ij}^{M}(\epsilon_{ij}^{M})$,其应力-应变关系如下:

$$\begin{vmatrix} \dot{\sigma}_{B}^{B} \\ \dot{\sigma}_{yy}^{B} \\ \dot{\sigma}_{xy}^{B} \end{vmatrix} = \begin{bmatrix} \dot{E}_{11} & \dot{E}_{12} & 0 \\ \dot{E}_{21} & \dot{E}_{22} & 0 \\ 0 & 0 & \dot{E}_{33} \end{bmatrix} \begin{cases} \dot{\varepsilon}_{B}^{B} \\ \dot{\varepsilon}_{yy}^{B} \\ \dot{\varepsilon}_{xy}^{B} \end{cases}$$
(11)

$$\dot{\sigma}_{xx}^{\mathrm{M}} = E_{\mathrm{T}} \dot{\boldsymbol{\varepsilon}}_{xx}^{\mathrm{M}} \tag{12}$$

根据位移条件,弯曲应变增量 ε^B_i存在以下关系^[17]:

$$\begin{cases} \dot{\boldsymbol{\varepsilon}}_{xx}^{\mathrm{B}} \\ \dot{\boldsymbol{\varepsilon}}_{yy}^{\mathrm{B}} \\ \dot{\boldsymbol{\varepsilon}}_{xy}^{\mathrm{B}} \end{cases} = \begin{cases} -\dot{z} \dot{\boldsymbol{w}}_{,xx} \\ -\dot{z} \dot{\boldsymbol{w}}_{,yy} \\ 2\dot{z} \dot{\boldsymbol{w}}_{,xy} \end{cases}$$
(13)

式中: z 为距离板中和面的距离(即厚度方向坐标); w,x 为 w 对 x 求二次偏导的张量表达形式; w,y 为 w 对 y 求二次偏导的张量表达形式; w,y 为 w 先后对 x、y 求偏导的张量表达形式(下同)。将本构关系式 (11)、(12)及几何关系式(13)代入虚功方程式 (10),利用变分原理和分部积分,最终可得修正 GBT 平衡微分方程和边界条件^[10,18],如下:

$$C_{ij} \left\{ \dot{\varphi}_{,xxxx} \right\} = D_{ij} \left\{ \dot{\varphi}_{,xx} \right\} + B_{ij} \left\{ \dot{\varphi} \right\} + PX_{ij} \left\{ \dot{\varphi}_{,xx} \right\} = 0$$

$$\left\{ \delta \dot{\varphi}_{,x} \right\}^{\mathrm{T}} \left(C_{ij} \left\{ \dot{\varphi}_{,xx} \right\} + D_{ij} {}^{II} \left\{ \dot{\varphi} \right\} \right) \Big|_{0}{}^{\mathrm{L}} = 0$$

$$\left\{ \delta \dot{\varphi}_{,x} \right\}^{\mathrm{T}} \left[C_{ij} \left\{ \dot{\varphi}_{,xxx} \right\} + \left(D_{ij} {}^{\mathrm{II}} - D_{ij} {}^{\mathrm{I}} + PX_{ij} \right) \right] \cdot$$

$$\left\{ \delta \dot{\varphi}_{,x} \right\}^{\mathrm{T}} \left[C_{ij} \left\{ \dot{\varphi}_{,xxx} \right\} + \left(D_{ij} {}^{\mathrm{II}} - D_{ij} {}^{\mathrm{I}} + PX_{ij} \right) \right] \cdot$$

 $\{\dot{\varphi}_{,x}\}$] $|_{0}^{L} = 0$ (16) 式中: $\{\dot{\varphi}\}$ 为屈曲模态变形增量函数矩阵,其具体形 式将在下文介绍; L 为构件长度; C_{ij} 、 D_{ij} 、 B_{ij} 、 X_{ij} 分 别为截面与模态i、j相关的翘曲刚度、扭转刚度、横 向弯曲刚度和几何刚度; $D_{ij}{}^{I}$ 和 $D_{ij}{}^{II}$ 分别为截面与 模态i、j相关的一阶扭转刚度和二阶扭转刚度,根据 板件不同屈曲模态位移由下式计算:

$$C_{ij} = \int_{s} t E_{\mathrm{T}} u_{i} u_{j} \,\mathrm{d}y + \int_{s} \frac{t^{3}}{12} \dot{E}_{11} w_{i} w_{j} \,\mathrm{d}y$$
$$D_{ij} = D_{ij}^{I} - D_{ij}^{II} = \int_{s} \frac{t^{3}}{6} \dot{E}_{33} w_{i,y} w_{j,y} \,\mathrm{d}y - \int_{s} \frac{t^{3}}{12} \dot{E}_{12} \left(w_{i} w_{j,yy} + w_{i,yy} w_{j} \right) \mathrm{d}y$$
(17)

$$B_{ij} = \int_{s} \frac{t^{3}}{12} \dot{E}_{22} w_{i,yy} w_{j,yy} dy$$
$$X_{ij} = \int_{s} \frac{t}{A} (v_{i}v_{j} + w_{i}w_{j}) dy$$

式中:t为板厚,积分沿板件宽度方向s进行。

1.5 修正 GBT 平衡微分方程的求解

与传统 GBT 针对截面、构件步骤分析不同,非 线性材料受瞬时模量影响,不同应力水平下截面各 刚度系数也不同,因此修正 GBT 方法截面分析与构 件分析不是独立的,需同时考虑进行。应用迦辽金法 求解式(14),即选取满足构件边界条件的形函数,将 式(14)转化为下式:

$$P = \frac{1}{X_{ij}} (\mu_C C_{ij} + D_{ij} + \mu_B B_{ij})$$
(18)

式中:µ_B、µ_C为变形模态系数,按式(19)计算:

$$\mu_{\rm B} = \frac{\int_{0}^{L} \dot{\varphi}^2 \, \mathrm{d}x}{\int_{0}^{L} \dot{\varphi}^2_{.x} \, \mathrm{d}x}, \qquad \mu_{\rm C} = \frac{\int_{0}^{L} \dot{\varphi}^2_{.xx} \, \mathrm{d}x}{\int_{0}^{L} \dot{\varphi}^2_{.x} \, \mathrm{d}x}$$
(19)

式中: φ 为形函数,反映截面变形沿构件纵向 x 的分 布规律,其形式受边界约束条件控制。常见 4 类边界 约束的形函数 φ 为^[19]:

两端均为铰支座:

$$\dot{\varphi} = \sin\left(\frac{m\pi x}{L}\right) \tag{20}$$

两端均为固定支座:

$$\bar{\varphi} = \sin\left(\frac{m\pi x}{L}\right)\sin\left(\frac{\pi x}{L}\right) \tag{21}$$

一端固定支座另一端铰支座:

$$\dot{\varphi} = \left\{ \sin\left[\frac{(m+1)\pi x}{L}\right] + \frac{m+1}{m} \sin\left(\frac{m\pi x}{L}\right) \right\} \quad (22)$$

一端固定支座另一端滑动支座:

$$\dot{\varphi} = \sin\left[\frac{(2m-1)\pi x}{2L}\right]\sin\left(\frac{\pi x}{2L}\right) \tag{23}$$

式中: m 为纵向屈曲半波数。

将式(20)~(23)给出的函数代入式(19),得变 形模态系数 μ_B、μ_C 的表达式为:

两端均为铰支座:

$$\mu_{\rm B} = \frac{L^2}{m^2 \pi^2}, \mu_{\rm C} = \frac{m^2 \pi^2}{L^2}$$
(24)

两端均为固定支座:

$$\mu_{\rm B} = \begin{cases} \frac{3L^2}{4\pi^2} & m = 1\\ \frac{2L^2}{2(m^2 + 1)\pi^2} & m \ge 2 \end{cases}$$
$$\mu_{\rm C} = \frac{\left[(m-1)^4 + (m+1)^4\right]\pi^2}{2(m^2 + 1)L^2} & (25)\\ - \ddot{m} \equiv \bar{z} \bar{z} \underline{\omega} S - \ddot{m} \overleftarrow{\xi} \bar{z} \underline{\omega} : \end{cases}$$

72

$$\mu_{\rm B} = \frac{\left[(m+1)^2 + m^2 \right] L^2}{2m^2 (m+1)^2 \pi^2}$$

$$\mu_{\rm C} = \frac{(m^2 + m + 1) \pi^2}{L^2} \qquad (26)$$

$$- \vec{\mathrm{m}} \, \mathrm{B} \, \mathrm{E} \, \mathrm{E} \, \mathrm{E} \, \mathrm{E} \, \mathrm{F} - \vec{\mathrm{m}} \, \mathrm{H} \, \mathrm{B} \, \mathrm{E} \, \mathrm{E} \, \mathrm{E}$$

$$\mu_{\rm B} = \begin{cases} \frac{3L^2}{5\pi^2} & m = 1\\ \frac{2L^2}{(2m^2 + 2m + 1)\pi^2} & m \ge 2 \end{cases}$$

$$\mu_{\rm C} = \frac{\left[(m-1)^4 + (m+1)^4 \right] \pi^2}{2 (m^2 + 1) L^2} \qquad (27)$$

综上,修正 GBT 法可概括为:根据材料的应力 应变关系、按式(1) ~ (5)确定瞬时弹性模量矩阵, 再根据板件位移、按式(17)确定截面刚度系数,最 后根据构件边界约束条件选择合适的形函数、按式 (18) ~ (27)求得屈曲荷载 P。

从式(17)可以看出,除几何刚度系数 X_{ij}外,其 余刚度系数均与瞬时弹性模量相关,即与待求荷载 P相关,因此在构件几何尺寸、边界条件已知的条件 下无法直接求解相应模态屈曲荷载,必需经过迭代 求解。

本文关于非线性构件屈曲荷载计算均采用上述 修正 GBT 法,利用计算软件 Maple 编写迭代程序, 计算过程中未出现结果不收敛。

2 不锈钢薄壁构件屈曲应力计算方法

2.1 局部屈曲应力

线弹性薄板纵向均匀受压屈曲应力 σ_{er},可由有 限元软件弹性分析求解特征值确定,也可通过以下 公式直接计算^[20]:

$$\sigma_{\rm cr} = \frac{K\pi^2 E}{12(1-\nu^2)} \left(\frac{t}{b}\right)^2 \tag{28}$$

式中: *E* 是材料的弹性模量; *K* 是纵向均匀受压、四 边简支矩形薄板的弹性屈曲系数, *K* = 4.0; *b* 和 *t* 分别是板的受力边(横向)边长和厚度。

Rasmussen 在悉尼大学完成了 2 组简支不锈钢 薄板纵向受压试验^[21],获得了双相 2 205 不锈钢薄 板均匀受压局部屈曲应力。下面利用本文提出的修 正 GBT 法计算简支不锈钢薄板局部屈曲应力,与 Rasmussen 试验数据对比,同时采用传统弹性公式 (28) 计算,验证各计算方法的适用性与准确性。

根据薄板纵向受压屈曲变形特点,板沿横向 y 形成一个正弦半波,其位移可以表示为以下函数:

$$u=0, v=0, w=\sin\left(\frac{\pi y}{b}\right) \tag{29}$$

代入式(17),求得薄板截面刚度系数为:

$$C = \int_{s} t E_{T} u^{2} dy + \int_{s} \frac{t^{3}}{12} \dot{E}_{11} w^{2} dy =$$

$$\int_{0}^{b} \frac{t^{3}}{12} \dot{E}_{11} \sin^{2} \left(\frac{\pi y}{b}\right) dy = \frac{\dot{E}_{11} b t^{3}}{24} \qquad (30)$$

$$D = D^{I} - D^{II} = \int_{s} \frac{t^{3}}{6} \dot{E}_{33} \left(\frac{\partial w}{\partial y}\right)^{2} dy -$$

$$\int_{s} \frac{t^{3}}{6} \dot{E}_{12} w \frac{\partial w^{2}}{\partial^{2} y} dy = \int_{0}^{b} \frac{t^{3}}{6} \dot{E}_{33} \frac{\pi^{2}}{b^{2}} \cos^{2} \left(\frac{\pi y}{b}\right) dy +$$

$$\int_{0}^{b} \frac{t^{3}}{6} \dot{E}_{12} \frac{\pi^{2}}{b^{2}} \sin^{2} \left(\frac{\pi y}{b}\right) dy = \frac{\dot{E}_{33} \pi^{2} t^{3}}{12b} + \frac{\dot{E}_{12} \pi^{2} t^{3}}{12b} \qquad (31)$$

$$B = \int_{s} \frac{t^{3}}{12} \dot{E}_{22} \left(\frac{\partial w^{2}}{\partial^{2} y}\right)^{2} dy =$$

$$\int_{0}^{b} \frac{t^{3}}{4} \dot{E}_{12} \frac{\pi^{4}}{4} \sin^{2} \left(\frac{\pi y}{\partial^{2} y}\right) dy = \frac{\dot{E}_{22} \pi^{4} t^{3}}{4} \qquad (32)$$

$$\int_{0}^{b} \frac{t^{3}}{12} \dot{E}_{22} \frac{\pi^{4}}{b^{4}} \sin^{2}\left(\frac{\pi y}{b}\right) dy = \frac{E_{22}\pi^{4}t^{3}}{24b^{3}}$$
(32)
$$X = \int_{s} \frac{t}{A} \left(v^{2} + w^{2}\right) dy = \int_{0}^{b} \frac{t}{bt} \sin^{2}\left(\frac{\pi y}{b}\right) dy = \frac{1}{2}$$
(33)

板沿纵向形成 m 个屈曲半波,且边界条件为简 支,故形函数 $\dot{\varphi}$ 满足式(20),因此变形模态系数为式 (24): $\mu_{\rm B} = L^2 / (m^2 \pi^2) \pi \mu_{\rm C} = (m^2 \pi^2) / L^2$ 。

将以上计算结果代入修正 GBT 屈曲荷载计算 式(18),可得不锈钢薄板受压局部屈曲应力 σ_{l,er} 的 计算式:

$$\sigma_{1,cr} = \frac{P}{A} = \frac{\pi^2 t^2}{12b^2} \left(\frac{m^2 \dot{E}_{11} b^2}{a^2} + 2\dot{E}_{12} + 2\dot{E}_{33} + \frac{\dot{E}_{22} a^2}{m^2 b^2} \right)$$
(34)

Rasmussen 的不锈钢薄板纵向受压试验数据与 结果^[21]: E_0 = 181 650 MPa, $\sigma_{0.2}$ = 527 MPa,n = 4.6; 两组不锈钢薄板的几何尺寸分别为 126.0 mm×750 mm×3.02 mm和250.7 mm×750 mm×3.02 mm,对应的纵向屈曲半波数 *m*分别为6 和3。

采用上述 Rasmussen 的试验数据与结果,按本 文修正 GBT 法迭代求解局部屈曲应力,计算时取初 应力 $\sigma = \sigma_{0.2}$ 、相对误差为 0.1%,结果见表 1。表 1 中 同时给出了 Rasmussen 的试验值和按式(28)的计 算结果。可见,本文修正 GBT 法的计算结果与试验 值吻合良好,且变形法则的计算结果 σ_{deform} 偏于安 全、精度更高,可用于不锈钢薄板局部屈曲荷载的确 定;传统弹性公式(28)对屈曲应力水平较低、材料非 线性特征不明显的较宽板件按初始弹性模量计算具 有较好精度,但不适用于应力水平较高、材料非线性 特征明显的情况。传统 GBT 法与传统弹性公式(28) 按 E_0 计算的结果一致,表 1 未列出。

2.2 畸变屈曲应力

Lecce 等人在悉尼大学完成了固支卷边槽形不锈钢柱轴压试验^[22],测得了此类柱的畸变屈曲应

力。下面利用本文提出的修正 GBT 法结合畸变屈曲 的变形特点,计算固支卷边槽形不锈钢轴压柱的畸 变屈曲应力,与 Lecce 的试验结果、有限条法、传统 GBT 法计算结果比较,以验证各方法的准确性。

表 1 个锈钢薄极受压局部屈囲应刀

试件尺寸 / (mm×mm×mm) a	试验值	修正 GBT	计算结果	传统弹性公式(19)计算结果		
	$\sigma_{\rm test}/{ m MPa}$	$\sigma_{\rm flow}/{ m MPa}$	$\sigma_{ m deform}/ m MPa$	$\sigma_{\rm E0}/{\rm MPa}$	$\sigma_{\rm ET}/{ m MPa}$	$\sigma_{\rm ES}/{ m MPa}$
$126.0 \times 750 \times 3.02$	336	358	328	376	90	223
250.7 \times 750 \times 3.02	96	95	95	95	23	56

注: σ_{flow} 、 σ_{deform} 是瞬时弹性模量分别按式(2)、(3)确定的计算结果; σ_{ED} 、 σ_{ET} 、 σ_{ES} 是公式(19)中弹性模量 E分别用初始弹性模量 E_0 = 181 650 MPa,材料屈服时的切线模量 E_T = 43 549 MPa、割线模量 E_S = 107 524 MPa 得到的结果,其中 E_0 由 Rasmussen 试验测得, E_T 、 E_S 按式(4)、(5)确定。

卷边槽形截面形式及坐标系如图 2 所示。畸变 屈曲模态按腹板曲率分为单曲变形(S)和双曲变形 (D)2类,如图 3 所示。单曲变形比双曲变形的屈曲应 力低,Lecce不锈钢畸变屈曲试验中 11 个柱畸变模 态全部为腹板单曲变形,故本文选取腹板单曲变形 作为畸变屈曲的基本模态。选取与 Lecce 试验相同 的构件尺寸^[22],按照 GBT 方法,将构件稳定转化为 连续折板问题。卷边槽形不锈钢柱截面由 6 个节点、 5 块板件组成,如图 4 示。根据畸变屈曲单曲变形的 对称性,截面节点翘曲位移向量 $\{u_e\}$ 、节点弯矩向 量 $\{m_e\}$,板件薄膜横向位移 $\{v\}$ 、转角 $\{\varphi\}$ 、弯曲位移

图 2 卷边槽形截面及坐标系

图 3 畸变屈曲形态

图 4 截面节点及板件编号

{w}可表示为以下形式^[23],如图5所示(其中v即板件 延宽度方向s的位移不便在此图中示意而未给出):

$$\{u_{e}\} = \{-1 \quad u_{2} \quad u_{3} \quad u_{3} \quad u_{2} \quad -1\}^{\mathrm{T}} \{m_{e}\} = \{0 \quad 0 \quad m_{3} \quad m_{3} \quad 0\}^{\mathrm{T}} \{v\} = \{v_{s} \quad v_{f} \quad v_{w} \quad -v_{f} \quad -v_{s}\}^{\mathrm{T}} \{\varphi\} = \{\varphi_{s} \quad \varphi_{f} \quad \varphi_{w} \quad -\varphi_{f} \quad -\varphi_{s}\}^{\mathrm{T}} \{w\} = \{w_{s} \quad w_{f} \quad w_{w} \quad w_{f} \quad w_{s}\}^{\mathrm{T}}$$
(35)

节点位移与板件内任意点位移满足以下关系^[23]:

$$U_{\alpha}(s) = \frac{1}{2} u_{\alpha} (\Psi_1 - \Psi_2) + \frac{1}{2} u_{\alpha+1} (\Psi_1 + \Psi_2)$$
(36)

$$V_{\alpha}(s) = v_{\alpha} \Psi_1 \tag{37}$$

 $W_{\alpha}(s) = w_{\alpha} \Psi_1 + \frac{1}{2} b_{\alpha} \varphi_{\alpha} \Psi_2 -$

$$\frac{1}{3K}b_{a}^{2}\left(m_{a}\boldsymbol{\Psi}_{3}+m_{a+1}\boldsymbol{\Psi}_{4}\right)$$
(38)

式中,等式左边下标 α 为板件编号, s 为横向坐标, $U_{\alpha}(s)$ 、 $V_{\alpha}(s)$ 、 $W_{\alpha}(s)$ 为板件纵向、横向、厚度方向位 移函数;等式右边下标 α 为节点编号, u_{α} 为节点 α 的 翘曲位移, m_{α} 为节点 α 的弯矩, v_{α} 、 w_{α} 为板件 α 的 横向位移和挠度, Ψ_{i} 为关系形函数,表达如下^[23]:

$$\begin{cases} \Psi_{1} = 1 \\ \Psi_{2} = 2\xi - 1 \\ \Psi_{3} = -\xi + \frac{3}{2}\xi^{2} - \frac{1}{2}\xi^{3} \\ \Psi_{4} = -\frac{1}{2}\xi^{2} + \frac{1}{2}\xi^{3} \end{cases}$$
(39)

式中 $\xi = (s - s_{\alpha}) / (s_{\alpha+1} - s_{\alpha}), s_{\alpha}$ 为节点 α 横向坐标。

如 1.3 节所述,截面刚度系数受瞬时弹性模量 影响与应力水平有关,故无法直接求得屈曲应力,必 须假定初应力再迭代求解。

Lecce 试验中 11 个不锈钢柱的材料性能参数、构件尺寸、试验屈曲半波数 m 及屈曲应力 σ_{test} 见表 2、表 3,卷边与横轴夹角为直角(θ =90°)。

图 5 截面翘曲位移、弯矩、转角及弯曲示意图

表 2 不锈钢材料性

编号	$\sigma_{0.1}/\mathrm{MPa}$	$\sigma_{0.2}/\mathrm{MPa}$	σ_0/MPa	G/MPa
304	164	242	187 000	71 923
430	170	271	193 000	74 231
3Cr12	234	339	208 000	80 000

表 3 不锈钢柱几何尺寸及试验结果

编号	L/mm	$b_{ m w}/ m mm$	$b_{\rm f}/{ m mm}$	$b_{\rm s}/{ m mm}$	t/mm	m	$\sigma_{\rm test}/{ m MPa}$
304D1a	800	106.3	90.2	12.7	1.96	1	181
304D1b	800	105.8	90.0	12.5	1.96	1	179
304D2a	600	105.5	90.0	12.5	1.96	1	184
304D2b	600	105.6	90.1	12.5	1.96	1	184
430D1a	800	67.9	57.4	8.4	1.13	2	185
430D1b	800	67.7	57.6	8.6	1.13	2	185
430D2	480	67.5	58.5	10.0	1.13	1	209
430D3a	780	55.9	54.8	8.6	1.13	2	213
430D3b	782	55.6	54.9	8.7	1.13	2	207
3Cr12D1a	1 175	105.0	85.5	14.8	1.98	2	249
3Cr12D1b	1 178	105.0	85.4	14.8	1.98	2	250

参考传统 GBT 法按以下步骤求解畸变屈曲应 力^[23],应用计算程序软件 Maple 12 求取结果:

1)确定初应力及弹性模量

为减少迭代步骤,采用有限条程序 CUFSM 4.0 计算构件弹性屈曲应力,并作为截面初应力 σ_0 。根 据式(1)~(5)确定此初应力水平下的切线模量 E_T 、 割线模量 E_s ,并分别采用 J_2 变形法则和 J_2 流动法 则确定瞬时弹性模量 E_{ij} 。

2)确定几何参数(图 2)和板件弯曲刚度 K

$$lpha_{\mathrm{f}}=rac{b_{\mathrm{f}}}{b_{\mathrm{w}}}, \ \ lpha_{\mathrm{s}}=rac{b_{\mathrm{s}}}{b_{\mathrm{w}}}, \ \ eta_{\mathrm{s}}=lpha_{\mathrm{s}}\sin heta, \ \ K=rac{\dot{E}_{22}t^{3}}{12}$$

3)确定节点翘曲位移

$$u_{2} = \frac{\alpha_{s} \left[\alpha_{f} \left(2\alpha_{f} + 3 \right) \sin \theta + 2\beta_{s} \left(\alpha_{f} + 1 \right) \cos \theta \right]}{\alpha_{f} \sin \theta \left[\alpha_{f} \left(\alpha_{f} + 2 \right) + \alpha_{s} \left(2\alpha_{f} + 3 \right) \right] + \alpha_{s} \beta_{s} \left(\alpha_{f} + 1 \right) \cos \theta}$$
$$u_{3} = \frac{\alpha_{s} \left[\alpha_{f}^{2} \sin \theta + \beta_{s} \left(2\alpha_{f} + \alpha_{s} \right) \cos \theta \right]}{\alpha_{f} \sin \theta \left[\alpha_{f} \left(\alpha_{f} + 2 \right) + \alpha_{s} \left(2\alpha_{f} + 3 \right) \right] + \alpha_{s} \beta_{s} \left(\alpha_{f} + 1 \right) \cos \theta}$$

4)确定节点弯矩

$$m_{3} = -\frac{3K[\alpha_{f}(u_{2}+1)+\alpha_{s}(u_{2}-u_{3})\cos\theta]}{b_{s}^{3}\alpha_{f}^{2}\beta_{s}(\alpha_{f}+2)}$$
5)确定板件横向位移

$$v_{w} = 0, v_{f} = \frac{u_{2}-u_{3}}{b_{f}}, v_{s} = -\frac{u_{2}+1}{b_{s}}$$
6)确定板件转角

$$\varphi_{w} = 0, \varphi_{f} = \frac{(-v_{f}\cot\theta-v_{s}\csc\theta)}{b_{f}}, \varphi_{s} = \frac{m_{3}b_{f}}{6K} + \varphi_{f}$$
7)确定板件挠度

$$w_{w} = -v_{f}, w_{f} = \frac{1}{2}(v_{f}\cot\theta-v_{s}\csc\theta),$$

$$w_{s} = -\frac{1}{2}b_{s}\varphi_{s} + v_{f}\csc\theta - v_{s}\cot\theta$$

8)根据式(36)~(39),将以上节点、板件位移转 化为关于横坐标 s 的函数,获得板件位移函数 U_s(s) 、U_f(s)、U_w(s)、V_s(s)、V_f(s)、V_w(s)、W_s(s)、W_f(s)、 W_w(s),其中U、V、W 分别指纵向、横向及厚度方向,下 标 s、f、w 分别指卷边、翼缘及腹板。

$$9) \# \dot{D} \# \dot{B} \oplus \dot{B} \oplus \dot{B} \oplus \dot{C} + C_{1}(17) \# \ddot{H} \oplus \dot{D} \oplus \dot{B} \oplus \dot{B} \oplus \dot{C} + C_{1}(2) \int_{0}^{b_{s}} tE_{T} u^{2} dy + \int_{s} \frac{t^{3}}{12} \dot{E}_{11} w^{2} dy = tE_{T} \left(2 \int_{0}^{b_{s}} U_{s}^{2} ds + 2 \int_{b_{s}}^{b_{s}+b_{f}} U_{t}^{2} ds + \int_{b_{s}+b_{t}}^{b_{s}+b_{f}} U_{w}^{2} ds\right) + \frac{t^{3} \dot{E}_{11}}{12} \left(2 \int_{0}^{b_{s}} W_{s}^{2} ds + 2 \int_{b_{s}}^{b_{s}+b_{t}} W_{t}^{2} ds + \int_{b_{s}+b_{t}}^{b_{s}+b_{t}+b_{w}} W_{w}^{2} ds\right) \\ D = \int_{s} \frac{t^{3}}{6} \dot{E}_{33} \left(\frac{\partial w}{\partial y}\right)^{2} dy - \int_{s} \frac{t^{3}}{6} \dot{E}_{12} w \frac{\partial w^{2}}{\partial x^{2}} dy = \frac{t^{3} \dot{E}_{33}}{6} \left[2 \int_{0}^{b_{s}} \left(\frac{\partial W_{s}}{\partial s}\right)^{2} ds + 2 \int_{b_{s}}^{b_{s}+b_{t}} \left(\frac{\partial W_{t}}{\partial s}\right)^{2} ds + 2 \int_{b_{s}+b_{t}}^{b_{s}+b_{t}} \left(\frac{\partial W_{s}^{2}}{\partial s^{2}}\right)^{2} ds + 2 \int_{b_{s}+b_{t}}^{b_{s}+b_{t}} \left(\frac{\partial W_{s}^{2}}{\partial s^{2}}\right)^{2} ds + 2 \int_{b_{s}+b_{t}}^{b_{s}+b_{t}} \left(\frac{\partial W_{s}}{\partial s}\right)^{2} ds + 2 \int_{b_{s}+b_{t}}^{b_{s}+b_{t}+b_{w}} W_{w} \left(\frac{\partial W_{w}^{2}}{\partial s^{2}}\right)^{2} ds + 2 \int_{b_{s}+b_{t}}^{b_{s}+b_{t}} W_{w} \left(\frac{\partial W_{s}^{2}}{\partial s^{2}}\right)^{2} ds + 2 \int_{b_{s}+b_{t}}^{b_{s}+b_{t}+b_{w}} W_{w} \left(\frac{\partial W_{s}^{2}}{\partial s^{2}}\right)^{2} ds + 2 \int_{b_{s}+b_{t}}^{b_{s}+b_{t}} W_{w} \left(\frac{\partial W_{s}^{2}}{\partial s^{2}}\right)^{2} ds + 2 \int_{b_{s}+b_{t}}^{b_{s}+b_{t}+b_{w}} W_{w} \left(\frac{\partial W_{s}^{2}}{\partial s^{2}}\right)^{2} ds + 2 \int_{b_{s}}^{b_{s}+b_{t}} \left(\frac{\partial W_{s}^{2}}{\partial s^{2}}\right)^{2} ds + 2 \int_{b_{s}+b_{t}}^{b_{s}+b_{t}+b_{w}} \left(\frac{\partial W_{w}^{2}}{\partial s^{2}}\right)^{2} ds + 2 \int_{b_{s}}^{b_{s}+b_{t}} \left(\frac{\partial W_{w}^{2}}{\partial s^{2}}\right)^{2} ds + 2 \int_{b_{s}}^{b_{s}+b_{t}} \left(\frac{\partial W_{w}^{2}}{\partial s^{2}}\right)^{2} ds + 2 \int_{b_{s}}^{b_{s}+b_{t}} \left(V_{s}^{2}+W_{s}^{2}\right) ds + 2 \int_{b_{s}}$$

10)计算第一步畸变屈曲荷载

将截面刚度系数代入式(18),可求得第一步畸 变屈曲荷载 P_d。其中,变形模态系数 μ_B、μ_C 采用式 (25)计算(两端固支)。屈曲半波数 m 按 Lecce 试验 现象确定(表 4);若无试验数据参考,可选定若干 m 第3期

值,其中使屈曲应力计算结果最小的即 m 真实值, 并将其结果作为畸变屈曲荷载 P_d。

11)迭代求解最终畸变屈曲应力

第一步迭代求得的畸变屈曲应力为 $\sigma_d = P_d/A$ $(A 是构件截面积)。选取下一步迭代的初应力<math>\sigma_0$, 重复以上步骤进行迭代,当前后两次计算得到的 σ 值相对误差小于 0.1% 时迭代停止,并将最后一次 求得的 σ_d 作为构件畸变屈曲应力 σ_{d.er}。为提高效 率,可采用正割法或二分法选取下一步迭代的初应 力の。

按上述修正 GBT 法迭代求解得到的 Lecce 试 验中11个不锈钢柱畸变屈曲应力值见表4,表中同 时给出了按有限条法(CUFSM 软件)和传统 GBT 法的计算结果。

可见,有限条法和传统 GBT 法的计算结果误差 很大(>31%~104%),因此弹性计算方法不适用于 计算不锈钢等非线性材料构件的畸变屈曲应力。本 文修正 GBT 法得到的计算结果较精确,一般误差< 5%,个别最大误差10%,且变形法则的计算结果大 多偏于安全,因此可用于卷边薄壁不锈钢柱畸变屈 曲应力的确定。需指出的是,试验值为柱发生畸变 屈曲后失稳的极限荷载。但本文修正 GBT 法的计 算结果为畸变屈曲荷载,并非构件的极限荷载。研 究表明,构件在畸变屈曲后尚可继续加载,但增长幅 度非常有限[24]。

2.3 整体屈曲应力

轴心压杆整体失稳时有3种变形形态:弯曲屈 曲、扭转屈曲和弯扭屈曲。失稳时出现何种形态取 决于构件的截面、长度和约束情况等。钢结构中轴 心压杆主要采用双轴对称截面,失稳时发生绕强轴

或弱轴的弯曲屈曲。理想轴压杆发生弯曲屈曲,屈 曲荷载可采用欧拉公式计算[20]:

$$N_{\rm cr} = \frac{\pi^2 EI}{l_0^2} \tag{40}$$

式中: I 是截面惯性矩; l。是构件计算长度。

Rasmussen 等^[25]、Gardner^[26]分别对简支薄壁 箱形截面不锈钢柱进行了轴压试验,结果显示全部 试件均为弯曲失稳,试件的材性参数、截面尺寸、屈 曲荷载试验值 P_{test} 见表 5。下面利用本文修正 GBT 法计算简支不锈钢箱形截面不锈钢柱弯曲屈曲应 力,与试验数据对比,同时采用欧拉公式(40)计算, 验证各计算方法的适用性与准确性。

GBT 法对于弯曲问题采用平截面假定:横截面 在弯曲时平面外变形仍保持平面;忽略横向剪切应 变影响;平面内变形为刚性,即横截面上各点横向位 移相同。据此,柱绕 y 轴失稳时板件位移可表示为 以下形式[27](板件编号如图6示):

1 号板: $u_1 = \frac{h}{2} - z$, $\nu_1 = 1$, $w_1 = 0$ (41)

2 号板:
$$u_2 = -\frac{h}{2}, \quad \nu_2 = 0, \quad w_2 = 1$$
 (42)

3 号板:
$$u_3 = z - \frac{h}{2}$$
, $\nu_3 = -1$, $w_3 = 0$ (43)

$$4 \ \exists \ \mathbf{w}_4 = \frac{h}{2}, \quad \mathbf{w}_4 = 0, \quad \mathbf{w}_4 = -1 \quad (44)$$

式中: u_{α} 、 v_{α} 、 w_{α} ($\alpha = 1, 2, 3, 4$)为板件(沿纵向、宽度 方向、厚度方向的位移(坐标系如图1示); z 为板件 各点相对箱形截面几何中心的竖向坐标; b、h 为截 面尺寸(如图 6 示)。将 z 转化为图 1 折板坐标,则 1、3号板件位移可表示为:

1 号板:
$$u_1 = \frac{h}{2} - s$$
, $\nu_1 = 1$, $w_1 = 0$ (45)

表 4 卷边槽形不锈钢柱畸变屈曲应力对比

试件编号 $试验值 \sigma_{ ext{test}} MPa$	本文修正 GBT 法结果		有限条法 传统	传统 GBT	$\sigma_{ m flow}$	$\sigma_{ m deform}$	$\sigma_{ m FSM}$	$\sigma_{ m GBT}$	
	$\sigma_{\rm flow}/{ m MPa}$	$\sigma_{ m deform}/ m MPa$	$\sigma_{\rm FSM}/{\rm MPa}$	$\sigma_{\rm GBT}/{ m MPa}$	$\sigma_{ m test}$	$\sigma_{ m test}$	$\sigma_{ m test}$	$\sigma_{ m test}$	
304D1a	181	190.3	180.9	304.42	314.8	1.05	1.00	1.68	1.74
304D1b	179	190.6	180.7	304.60	311.3	1.06	1.01	1.70	1.74
304D2a	184	185.5	180.8	361.77	375.5	1.01	0.98	1.97	2.04
304D2b	184	185.4	180.7	361.42	375.0	1.01	0.98	1.96	2.04
430D1a	185	179.6	175.3	243.10	242.7	0.97	0.95	1.31	1.31
430D1b	185	182.0	177.3	246.00	250.2	0.98	0.96	1.33	1.35
430D2	209	214.9	207.0	423.30	411.6	1.03	0.99	2.03	1.97
430D3a	213	200.0	192.6	321.80	293.1	0.94	0.90	1.51	1.38
430D3b	207	200.9	193.6	322.90	297.3	0.97	0.94	1.56	1.44
3Cr12D1a	249	263.2	259.1	335.30	378.5	1.06	1.04	1.35	1.52
3Cr12D1b	250	263.2	258.9	335.10	378.0	1.05	1.04	1.34	1.51
平均值						1.01	0.98	1.61	1.64
标准差						0.04	0.04	0.28	0.28

注: σFSM、σGBT分别是按目前常用的有限条法(CUFSM软件)和传统GBT法计算得到的畸变屈曲应力。

76

土木建筑与环境工程

主5 不锈钢柱口何尺寸 材料性能及试验结果

农。 个场附在几两尺寸、忉杆住能及低湿结末									
试件编号	l_0/mm	h/mm	b/mm	t/mm	E_0/MPa	$\sigma_{0.2}/\mathrm{MPa}$	n	$P_{\rm test}/{ m kN}$	
S1L1000	1 450	80.3	80.3	2.98	191 000	440	3.0	344	
S1L2000	2 450	80.4	80.4	2.99	191 000	440	3.0	193	
SHS 80×80×4-LC2	2 050	79.5	79.8	3.74	203 200	416	3.5	307	
SHS 100×100×3-LC2	2 050	100.1	100.2	2.83	195 800	388	5.6	350	
SHS 100×100×4-LC2	2 050	99.8	100.0	3.77	203 400	437	3.9	464	
SHS 100×100×6-LC2	2 050	100.1	100.5	5.92	197 900	473	4.4	842	
SHS 150×150×4-LC2	2 050	150.4	150.0	3.77	206 000	314	4.5	692	
RHS 100×50×2-LC2	2 050	99.8	49.8	1.83	205 900	370	5.2	157	
RHS 120×80×2-LC2	2 050	120.0	80.2	2.91	197 300	429	4.2	313	
RHS 120×80×4-LC2	2 050	120.0	80.4	5.87	192 300	466	4.4	677	
RHS 100×50×2-LC1	1 050	99.8	50.0	1.82	205 900	370	5.2	163	
RHS 100×50×3-LC1	1 050	100.1	50.0	2.86	200 900	455	4.1	304	

注:1. S1L1000、S2L1000 为 Rasmussen 试验结果^[25],其他试件为 Gardner 试验结果^[26]。2. RHS 为矩形截面,其弯曲屈曲表现为绕强轴和 弱轴两种失稳形式,其中 RHS 100×50×2-LC2 试件为绕强轴失稳,其余试件为绕弱轴失稳。

3 号板:
$$u_3 = (s-b-h) - \frac{h}{2}$$
, $\nu_3 = -1$,
 $w_3 = 0$ (46)

按以下步骤求解弯曲屈曲应力,应用计算程序 软件 Maple 12 求取结果:

1)确定初应力及弹性模量

采用材料条件屈服极限 $\sigma_{0.2}$ 作为截面初应力 $\sigma_{0.3}$ 。 根据式(1)~(5)确定此初应力水平下的切线模量 $E_{\rm T}$ 、割线模量 $E_{\rm s}$,并分别采用 J_2 变形法则和 J_2 流 动法则确定瞬时弹性模量 E_{ii}。

2)确定板件位移函数

图 6 箱形截面板件编号

按式(45)、(42)确定1、2号板件位移函数。 3)将位移函数代入式(17)求解截面刚度系数

$$C = \int_{s} t E_{T} u^{2} dy + \int_{s} \frac{t^{3}}{12} \overline{E}_{11} w^{2} dy =$$

$$t E_{T} \left(2 \int_{0}^{h} u_{1}^{2} ds + 2 \int_{h}^{h+b} u_{2}^{2} ds \right) + \frac{t^{3} \dot{E}_{11}}{12} \left(2 \int_{0}^{h} w_{1}^{2} ds +$$

$$2 \int_{h}^{h+b} w_{2}^{2} ds \right) = t E_{T} \left(\frac{1}{6} b_{w}^{3} + \frac{1}{2} b_{w}^{2} b_{f} \right) + \frac{1}{6} t^{3} E_{11} b_{f}$$

$$D = \int_{s} \frac{t^{3}}{6} \dot{E}_{33} \left(\frac{\partial w}{\partial y} \right)^{2} dy - \int_{s} \frac{t^{3}}{6} \dot{E}_{12} w \frac{\partial w^{2}}{\partial^{2} y} dy =$$

$$\frac{t^{3}\dot{E}_{33}}{6} \left(2\int_{0}^{h} \left(\frac{\partial w_{1}}{\partial s}\right)^{2} \mathrm{d}s + 2\int_{h}^{h+b} \left(\frac{\partial w_{2}}{\partial s}\right)^{2} \mathrm{d}s \right) - \frac{t^{3}\dot{E}_{12}}{6} \left(2\int_{0}^{h} w_{1} \left(\frac{\partial w_{1}^{2}}{\partial^{2}s}\right)^{2} \mathrm{d}s + 2\int_{h}^{h+b} w_{2} \left(\frac{\partial w_{2}^{2}}{\partial^{2}s}\right)^{2} \mathrm{d}s \right) = 0$$
$$B = \int_{s} \frac{t^{3}}{12} \dot{E}_{22} \left(\frac{\partial w^{2}}{\partial^{2}y}\right)^{2} \mathrm{d}y = \frac{t^{3}\dot{E}_{22}}{12} \left(2\int_{0}^{h} \left(\frac{\partial w_{1}^{2}}{\partial^{2}s}\right)^{2} \mathrm{d}s + 2\int_{h}^{h+b} \left(\frac{\partial w_{2}^{2}}{\partial^{2}s}\right)^{2} \mathrm{d}s \right) = 0$$
$$X = \int_{s} \frac{t}{A} \left(v^{2} + w^{2}\right) \mathrm{d}y = \frac{1}{b+h} \left[2\int_{0}^{h} \left(v_{1}^{2} + w_{1}^{2}\right) \mathrm{d}s + 2\int_{h}^{h+b} \left(v_{2}^{2} + w_{2}^{2}\right) \mathrm{d}s \right] = 1$$

4)计算第一步弯曲屈曲荷载

将截面刚度系数代入式(18),可求得第一步弯 曲屈曲荷载 P_g。其中,变形模态系数 µ_B、µ_C 采用式 (24)计算(两端简支),取屈曲半波数 m=1。

5)采用与 2.2 节相同迭代方法求解得最终弯曲 屈曲荷载 Pg,cr。

按上述修正 GBT 法迭代求得的 Rasmussen、 Gardner 试验中 12 个不锈钢长柱弯曲屈曲荷载计 算值见表 6。研究发现,整体弯曲失稳时应力水平 较低(最大 359 MPa),材料割线刚度比 Λs 约等于 1,故变形法则和流动法计算结果近似,表中统一用 $P_{\rm G}$ 表示;按传统 GBT 法和欧拉公式计算结果相同, 统一用 $P_{\rm E}$ 表示;试验值用 $P_{\rm test}$ 表示。

可见,欧拉公式和传统 GBT 法的计算结果误差 非常大(>68%~499%),因此弹性计算方法不适用 于计算不锈钢等非线性材料构件的弯曲屈曲荷载。 本文修正 GBT 法得到的计算结果较精确,一般误差 <3%,个别最大误差6%,因此可用于箱形不锈钢 柱弯曲屈曲荷载的确定。

表 6 箱形	截面不锈	钢长柱弯	昏曲屈曲	荷载对比	
编号	$P_{\rm test}/{\rm kN}$	$P_{\rm G}/{ m kN}$	$P_{\rm E}/{ m kN}$	$P_{\rm G}/P_{\rm test}$	$P_{\rm E}/P_{\rm tes}$
S1L1000	344	341	920	0.99	2.67
S1L2000	193	203	325	1.05	1.68
SHS 80×80×4	307	302	599	0.98	1.95
SHS 100×100×3	350	335	870	0.96	2.49
SHS 100×100×4	464	473	1194	1.02	2.57
SHS 100×100×6	842	819	1845	0.97	2.19
SHS 150×150×4	692	680	4143	0.98	5.99
RHS $100 \times 50 \times 2 - 2$	2 157	148	366	0.94	2.33
RHS 120×80×2	313	323	636	1.03	2.03
RHS 120×80×4	677	701	1257	1.04	1.86
RHS $100 \times 50 \times 2 - 1$	163	158	488	0.97	2.99
RHS 100×50×3	304	296	749	0.97	2.46
平均值				0.99	2.60
标准差				0.03	1.13

3 结 论

提出适用于非线性材料的广义梁理论屈曲荷载 计算方法,并对不锈钢薄壁受压构件局部屈曲、畸变 屈曲和整体屈曲3种失稳模态的屈曲荷载进行计 算。经验证,本文提出的修正GBT法具有较高精 度,可用于确定非线性材料屈曲荷载,同时应注意以 下2点:

1)传统弹性计算方法不适用于不锈钢等非线性 材料。由于未考虑瞬时弹性模量变化,忽略了非线 性材料的刚度折减,传统弹性计算方法的计算结果 明显高于试验值,不能用于实际工程设计。

2)与流动法则相比,按变形法则理论确定材料 瞬时模量,所得计算结果精确又偏于安全,且公式形 式简洁、程序编写容易,可为研究人员、设计人员参 考采用。

参考文献:

[1] 王元清,袁焕鑫. 不锈钢结构的应用和研究现状[J]. 钢 结构, 2010, 25(2): 1-12,18.

Wang Y Q, Yuan H X. A review of current applications and research of stainless steel structure [J]. Steel Construction, 2010, 25(2):1-12,18.

- [2] Gedge G. Structural uses of stainless steel-buildings and civil engineering [J]. Journal of Constructional Steel Research, 2008, 64(11): 1194-1198.
- [3]朱浩川,姚谏.不锈钢材料的应力-应变模型[J]. 空间 结构,2011,17(1):62-69. Zhu H C, Yao J. Stress-strain model for stainless steel

[J]. Spatial Structures, 2011, 17(1):62-69.

- [4] Tvergaard V, Needleman A. On the foundations of plastic buckling [J]. Developments in Thin-Walled Structures, 1982, 1:205-233.
- [5] Hutchinson J W. Plastic buckling [J]. Advances in Applied Mechanics, 1974, 14: 67-144.
- [6] Schard R. Generalized beam theory-an adequate method for coupled stability problems [J]. Thin-Walled Structures, 1994, 19: 161-180.
- [7] Davies J M, Leach P. First-order generalised beam theory [J]. Journal of Constructional Steel Research, 1994, 31(2/3):187-220.
- [8] Davies J M, Leach P, Heinz D. Second-order generalised beam theory [J]. Journal of Constructional Steel Research, 1994, 31(2/3): 221-241.
- [9] Davies J M. Generalised beam theory (GBT) for coupled instability problems [C]//Courses and Lectures International Centre for Mechanical Sciences, 1998:151-224.
- [10] Schardt R. Generalized beam theory-an adequate method for coupled stability problems [J]. Thin-Walled Structures, 1994, 19:161-80.
- [11] Schardt R. Lateral torsional and distortional buckling of channel-and hat-sections [J]. Journal of Constructional Steel Research, 1994, 31(2/3): 243-265.
- [12] Camotim D, Silverstre N, Goncalves R, et al. GBT-based structural analysis of thin-walled members: overview, recent progress and future developments
 [C]//Advances in Engineering Structures, Mechanics &. Construction, 2006: 187-204.
- [13] Goncalves R, Camotim D. GBT local and global buckling analysis of aluminium and stainless steel columns [J]. Computers & Structures, 2004, 82: 1473-1484.
- [14] Quach W M, Teng J G, Chung K F. Three-stage fullrange stress-strain model for stainless steels [J]. Journal of Structural Engineering, 2008, 134(9):1518-1527.
- [15] Handelman G H, Prageb W. Plastic buckling of a rectangular plate under edge thrusts [C]//National Advisory Committee for Aeronautics Report 946, 1948: 479-506.
- [16] Bijlaard P. Theory and tests on the plastic stability of plates and shells [J]. Journal of the Aeronautical Sciences, 1949(16): 529-541.
- [17] 童根树. 钢结构的平面外稳定[M]. 北京:中国建筑工业出版社,2007.
- [18] Silvestre N, Camotim D. Second-order generalised beam theory for arbitrary orthotropic materials [J]. Thin-Walled Structures, 2002, 40(9): 791-820.

- [19] Bradford M A, Azhari M. Buckling of plates with different end conditions using the finite strip method [J]. Computers & Structures, 1995, 56(1): 75-83.
- [20] 姚谏, 夏志斌. 钢结构——原理与设计[M]. 北京: 中国建筑工业出版社,2011.
- [21] Rasmussen K J R. Numerical modelling of stainless steel plates in compression [J]. Journal of Constructional Steel Research, 2003, 59 (11): 1345-1362.
- [22] Lecce M, Rasmussen K J R. Distortional buckling of cold-formed stainless steel sections: Experimental investigation [J]. Journal of Structural Engineering, 2006, 136(4): 497-504.
- [23] Silvestre N, Camotim D. Distortional buckling formulae for cold-formed steel C and Z-section members: Part I: Derivation [J]. Thin-Walled Structures, 2004, 42

(11): 1567-1597.

- [24] 陈绍蕃. 钢结构设计原理[M]. 北京:科学出版社, 2005.
- [25] Rasmussen K, Hancock G J. Design of cold-formed stainless steel tubular members. I: Columns [J]. Journal of Structural Engineering, 1993, 119: 2349-2367.
- [26] Gardner L, Nethercot D A. Experiments on stainless steel hollow sections—Part 2: Member behaviour of columns and beams [J]. Journal of Constructional Steel Research, 2004, 60(9): 1319-1332.
- [27] 徐翔. 基于广义梁理论(GBT)的线弹性薄壁梁考虑截 面畸变的翘曲研究[D]. 西安:西安建筑科技大学, 2003.

(编辑 王秀玲)

(上接第54页)

- [8] 张哲. 波纹腹板 H 型钢及组合梁力学性能理论与试验 研究[D]. 上海:同济大学,2009:84-112.
- [9] CECS 291:2011 波纹腹板钢结构技术规程[S].北京:中国计划出版社,2011.
- [10] Plumier A. Behavior of connections [J]. Journal of Constructional Steel Research, 1994, 29 (1/2/3): 95-119.
- [11] JGJ 99-98 高层民用钢结构技术规程[S]. 北京:中国 建筑工业出版社,1998.
- [12] Gerstle K H. Effect of connections on frames [J]. Journal of Constructional Steel Research, 1988, 10:241-267.
- [13] Farrokhi H, Danesh F, Eshghi S. A modified moment resisting connection for ductile steel frames (Numerical

and experimental investigation) [J]. Journal of Constructional Steel Research, 2009, 65 (10/11):2040-2049.

- [14] Pachoumis D T, Galoussis E G, Kalfas C N. et al. Cyclic performance of steel moment-resisting connections with reduced beam sections-experimental analysis and finite element model simulation [J]. Engineering Structures, 2010, 32: 2683-2692.
- [15] Stelmack T W, Marley M J, Gerstle K H. Analysis and tests of flexibly connected steel frames [J]. Journal of Structural Engineering, ASCE, 1986, 112(7):1573-1588.

(编辑 胡英奎)