doi:10.11835/j.issn.1674-4764.2014.04.004

内置 CFRP 管的方钢管混凝土轴压短柱 失效分析及延性优化

郎 䶮1,杨志坚2,李泽良1

(1. 宿迁学院 建筑工程系,江苏 宿迁 223800;

2. 天津大学 建筑工程学院,天津 300072)

摘 要:为了分析内置 CFRP 管(碳纤维增强塑料圆管)的方钢管混凝土轴压短柱失效原因,并探索延 性优化的方法,基于相关试验的文献资料,采用有限元方法对轴压短柱工况进行计算,并结合试件剖析 失效的原因。采用麦夸特法回归分析,提出内置 CFRP 管的方钢管混凝土柱延性优化初探计算式。结 果表明:CFRP 管破裂是内置 CFRP 管的方钢管混凝土轴压短柱最终失效的主要原因;内置 CFRP 管 的方钢管混凝土轴压短柱的核心混凝土裂缝开展较普通方钢管混凝土范围更小;CFRP 管粘结长度不 足,会导致内置 CFRP 管的方钢管混凝土轴压短柱无法充分发挥力学性能。适当提高碳钢约束比 ξ₁/ξ₂,可以改善和优化内置 CFRP 管的方钢管混凝土轴压短柱的延性性能。

关键词:方钢管混凝土;CFRP管;有限元计算;失效;延性优化

中图分类号:TU224 文献标志码:A 文章编号:1674-4764(2014)04-00022-06

Failure Analysis and Ductility Optimization of CFSST Stub Column with Inner CFRP Tube Under Axial Compressive Load

Lang Yan¹, Yang Zhijian², Li Zeliang¹

Department of Building Engineering, Suqian College, Suqian 223800, Jiangsu, P. R. China;
 School of Civil Engineering, Tianjin University, Tianjin 300072, P. R. China)

Abstract: In order to analyze the failure and optimize the ductility of concrete-filled square steel tubular stub column with inner CFRP tube (CFSST-CFRP) under axial compressive load, the mechanical behaviors of specimens in related tests were analyzed by a finite element software ABAQUS. And failure analysis was made. A reasonable expression on ductility optimization and improvement is drawed through nonliner regression. The results indicate that CFRP fracture is a principal reason of CFSST-CFRP stub column failure under axial compressive load. Meanwhile, its ductility can be improved by increasing the value of ξ_f/ξ_s . Concrete-filled square steel tubular (CFST) stub column crack more seriously than CFSST-CFRP, and CFSST-CFRP stub column is not functioning adequately, without available CFRP bonded. Key words: CFSST; CFRP tube; finite element analysis; failure; ductility optimization

随着方形钢管混凝土在实际工程中的应用日趋 广泛以及研究的不断深入,衍生出各类新型方钢管 混凝土。这些新型方钢管混凝土大部分是通过某些 措施(设置隅撑^[1]、设置拉杆^[2]、设置钢肋^[3]、复式钢 管^[4-5]和外包 CFRP^[6-7])来增强方钢管对核心混凝 土的约束作用或增强方钢管的稳定性,进而提高方 钢管混凝土的极限抗压承载力等力学性能。王先铁 等^[8-9]对方钢管混凝土框架与带肋方钢管混凝土梁

收稿日期:2013-11-04

基金项目:宿迁学院科研基金项目(2012ky22)。

作者简介:郎䶮(1985-),男,主要从事钢结构、钢-混凝土组合结构研究,(E-mail)llangyan@163.com。

第4期

柱节点的研究均表明:较之良好的承载力,具有较高 延性的结构能更好地吸收与耗散地震能量,在抗震 设计时显得尤为重要。钢管混凝土柱的轴压破坏一 般以混凝土压碎作为标志,提高钢管混凝土柱的延 性就相当于增加混凝土压碎前柱的变形能力或增加 混凝土的极限压应变。

结合方钢管混凝土的施工便利性以及碳纤维材 料优异的力学性能,李帼昌等^[10-14]对内置 CFRP 管 的方钢管混凝土的力学性能展开了试验研究,分析 了内置 CFRP 管的方钢管混凝土柱工作机理,并提 出了承载力计算式。笔者对文献[14-15]的试验进 行对比,对部分短柱进行剖解,分析短柱的承载力下 降原因。利用 ABAQUS 通用有限元计算软件进行 计算,明确延性影响因素,并探索延性优化方法。

1 失效分析

1.1 参数定义

内置 CFRP 管的方钢管混凝土主要由方钢管、 CFRP 管、夹层混凝土(钢管与 CFRP 管之间的混凝 土)以及内核混凝土(CFRP 管内的混凝土)4 部分组 成,其中 CFRP 管制作时碳纤维布粘结部分应具有 足够的长度,以保证 CFRP 管在受力过程中充分发 挥约束作用,如图 1 所示。表 1 列出了内置 CFRP 管的方钢管混凝土短柱与同条件下制作并试验的普 通方钢管混凝土短柱轴压试验数据^[14-15],并绘制轴 心压力 N 和轴向平均应变 ε 关系试验曲线,如图 2 所示。B 为短柱截面外边长, t 为管壁厚度, L 为短 柱长度。钢管约束效应系数 $\xi_s = (A_s/A_c) \cdot$ (f_y/f_{ck}) ,其中钢材屈服强度 f_y 取 291 MPa, f_{ck} 为 混凝土轴心抗压强度标准值, A_s 表示钢管的横截面 面积,核心混凝土的横截面面积 $A_c = A_{cs} + A_{ci}, A_{cs}$ 为夹层混凝土的横截面面积, A_{ci} 为内核混凝土的横 截面面积; CFRP 管约束效应系数 $\xi_i = (A_f/A_{ci}) \cdot$ (f_f/f_{ck}) ,其中 A_f 表示 CFRP 管的横截面面积, f_f 为碳纤维的抗拉强度;钢材极限强度 f_u 为 418 MPa,钢材弹性模量 E_s 取 206 GPa,钢材泊松比取 0.29,混凝土立方体抗压强度 $f_{cu} = 75$ MPa,弹性模 量 $E_c = 4.01 \times 10^4$ MPa, CFRP 管 直径 D 为 125 mm, N_{uc} 为短柱极限承载力试验值。

图1 内置 CFRP 管的方钢管混凝土横截面示意图

表1 短柱编号与有限元计算结果一览表

短柱编号	边长 B/mm	管厚 t / mm	B/t	ξf	$\xi_{ m s}$	$N_{ m ue} / { m kN}$	$N_{ m u}/{ m kN}$	误差/%	数据来源
AS40	200	3.5	57.1	0.000	0.369	3 185	3 069	3.6	文献[15]
AS42	200	3.5	57.1	0.748	0.369	3 044	3 007	1.2	文献[14]
AS44	200	3.5	57.1	1.500	0.369	3 259	3 223	1.1	文献[14]
AS50	200	4.5	44.4	0.000	0.458	3 399	3 290	3.2	文献[15]
AS52	200	4.5	44.4	0.748	0.458	3 274	3 430	-4.8	文献[14]
AS54	200	4.5	44.4	1.500	0.458	3 299	3 437	-4.2	文献[14]
AS60	200	5.8	34.5	0.000	0.689	3 745	3 582	4.4	文献[15]
AS62	200	5.8	34.5	0.748	0.689	3 725	3 711	0.4	文献[14]
AS64	200	5.8	34.5	1.500	0.689	3 755	3 769	-0.4	文献[14]

注:短柱编号定义 A为轴压;S为短柱;4、5、6为管壁的名义厚度;0、2、4为碳纤维布的层数。

图 2 表明,普通方钢管混凝土短柱在轴压试验 过程中,其承载力仅出现一次明显下降;内置 CFRP 管的方钢管混凝土轴压短柱承载力出现两次明显下 降:达到极限承载力后的首次下降,与承载力恢复后 的第 2 次下降。笔者将承载力第 2 次下降时的短柱 状态确定为"失效"。

对图 2 的分析表明,内置 CFRP 管的方钢管混 凝土轴压短柱在达到极限承载力之后,保持着较普通

方钢管混凝土更高的承载力水平($\epsilon = 9 000 \mu\epsilon$,短柱 AS50 承载力 N=2 218 kN,短柱 AS54 承载力 N= 3 011 kN),说明内置 CFRP 管的方钢管混凝土短柱 的后期承载力更高。方钢管材料及截面尺寸不变, CFRP 管壁越厚,短柱的承载力首次下降幅度越小 ($\epsilon = 6 500 \mu\epsilon$,AS62 承载力下降 312 kN,AS64 承载 力未见明显下降)。CFRP 材料及截面尺寸不变,钢 管管壁越厚,短柱的承载力首次下降幅度越小($\epsilon =$

6 500 μ e,短柱 AS52 承载力 N = 2 861 kN,短柱 AS62 承载力 N = 3 413 kN)。因此,认为由于 CFRP 管与钢管的共同约束作用,降低了短柱轴压 承载力的首次下降幅度,帮助了轴压短柱后期承载

1.2 有限元模型

力的恢复,进而改善其延性。

采用 ABAQUS 有限元软件对文献[14-15]中的 短柱进行了非线性数值分析。考虑到加载方式和构 件的对称性,采用构件的 1/4 柱体建立模型。模型 中各组成部件的主要接触关系如图 3 所示,其中 1、 3、5、7 面关于 YZ 面对称,2、4、6、8 面关于 ZX 面对 称。CFRP 管与混凝土之间接触关系采用 Tie 方式 模拟;钢管与混凝土之间法向接触关系采用 Hard 方式模拟,切向摩擦力采用 Penalty 控制,并使用 Small sliding 功能限制钢管与混凝土之间出现较大 的相对位移,便于计算收敛;端板与钢管端之间采用 Tie 方式模拟焊接,端板与混凝土之间的法向接触 关系采用 Hard 方式模拟,不考虑摩擦力,端板与 CFRP 管端之间不考虑接触。

用于有限元计算的钢材,混凝土与 CFRP 材料 采用文献[14]中的本构关系进行建模。钢材与混凝 土采用各向同性可变形实体单元建模,网格类型为 C3D8R;CFRP 材料采用各向异性的复合材料单元 建模,网格类型为 S4;钢材采用理想弹塑性模型模 拟,混凝土采用塑性损伤模型模拟,CFRP 采用理想 弹性模型模拟弹性阶段,并采用 Hashin 损伤模型模 拟断裂失效过程;下部端板固定,对上部端板施加轴 向位移进行加载。表1给出了短柱极限承载力有限 元计算值 N_u 以及 N_u 与文献[14-15]中试验值 N_{ue} 的误差;图 2给出了部分短柱 N-ε 有限元计算曲线, 与试验曲线基本符合,表明有限元计算结果可靠。

1.3 试件剖解及有限元分析

图 4 给出了 AS54 轴心受压短柱的剖解照片, 显示了 AS54 试件最终失效时(加载至图 8 中的 D 点右侧时)的形态,主要表现为:由于受到内部混凝 土的支撑,钢管在柱中位置局部鼓曲变形明显,如图 4(a)所示。切开鼓曲变形的钢管,位于钢管鼓曲相 应位置处的夹层混凝土被压碎,可以徒手将其轻松 剥落,如图 4(b)所示;移去破碎的夹层混凝土,可以 看到内部 CFRP 管纤维已经明显断裂,如图 4(c)所 示;移去断裂的 CFRP 管片,位于相应位置处的内核

图4 试件AS54 剖解结果

第4期

混凝土裂纹较明显,但并无混凝土被压碎的情况出 现,如图 4(d)所示。

图 5 给出了 AS54 轴心受压短柱的有限元计算 云图(加载至图 8 中 D 点位置),图 5(a)显示钢管的 角部区域 Mises 应力最大,且柱中位置的钢管出现 鼓曲变形(因使用 Small sliding 功能,鼓曲变形均匀 且不明显);由于受到 CFRP 管的约束作用导致柱中 位置的内核混凝土无法同夹层混凝土一样发生明显 的横向变形,因此图 5(b)显示夹层混凝土纵向应变 较小(进一步分析表明:夹层混凝土横向变形明显), 图 5(d)显示内核混凝土纵向应变较大。图 5(c)显 示柱中位置处的 CFRP 圆管纤维方向的拉应力也达 到了最大。综上所述,有限元分析结果与短柱的剖 解分析结果一致。

图 6 给出了普通方钢管混凝土轴压短柱失效时 的剖解照片以供对比分析,结果表明:相对于内置 CFRP 管的方钢管混凝土短柱,普通方钢管混凝土 的钢管鼓屈与混凝土压碎情况更严重,范围更大。

(a)钢管

图6 试件AS50 剖解图

考虑到 CFRP 管制作时碳纤维布粘结长度的不 同可能会对试件的力学性能产生影响,对采用粘结 长度为 20 mm(文献[14]粘结长度为 100 mm)的 CFRP 管制作的短柱进行了静力加载测试,如图 7 所示。图 7(a)给出了测试短柱的 N-ε 关系曲线,该 加载曲线异常,主要表现为:达到极限承载力后,曲 线连续下降。图7(b)给出了测试短柱的剖解图,剖 解结果表明:CFRP 管粘接部分已完全脱落,CFRP 管纤维未出现断裂,夹层混凝土与核心混凝土均被 压碎。结合有限元分析认为:CFRP 管的粘接长度 不足致使 CFRP 管粘结部分在短柱加载过程中提前 脱落,导致 CFRP 管无法继续发挥其对核心混凝土 的约束作用,内核混凝土应力重分布之后,继续被加 载的核心混凝土较容易被压碎。

图7 测试短柱试验结果

将文献[14]中轴心压力 N 和轴向平均应变ε典 型关系曲线进一步划分为5个阶段:弹性阶段 (OA), 屈服阶段(AB), 下降阶段(BC), 恢复阶段 (CD)和失效阶段(DE),如图 8 所示。结合试件剖 解结果及有限元分析内置 CFRP 管的方钢管混凝土 轴压短柱的承载力下降原因如下:承载力首次下降 主要集中在下降阶段(BC),其原因主要为钢管屈服 与夹层混凝土裂缝的开展,之后应力出现重分布,荷 载主要由内核混凝土承担;承载力第2次下降主要 集中在失效阶段(DE),其原因主要为 CFRP 管迅速 断裂,之后失去约束作用的内核混凝土内力释放,导 致无法继续承受更大荷载。

图8 轴心压力(N)-轴向位移(A)典型关系简化曲线

延性优化 2

2.1 延性优化目标

为了便于研究内置 CFRP 管的方钢管混凝土轴 压短柱的延性性能,对轴心压力 N 和轴向平均应变 ε 典型关系曲线^[14]进行简化,提出了轴心压力 N 和 轴向位移△ 典型关系简化曲线,如图 8 所示。

构件的延性是指从某个截面从屈服开始到达最 大承载能力或到达以后而承载能力还没有明显下降 期间的变形能力。根据文献[16]提出内置 CFRP 管 的方钢管混凝土轴压短柱延性系数表达式

26

$$\mu = \frac{\Delta_{\rm u}}{\Delta_{\rm y}} \tag{1}$$

式中: μ 为轴压短柱延性系数, Δ_y 为屈服位移, Δ_u 为 承载力下降到极限承载力 N_u 的 90%时对应的位移。

与普通方钢管混凝土不同,内置 CFRP 管的方 钢管混凝土轴压短柱 N-Δ 关系曲线具有恢复阶段 CD。为了利用恢复阶段承载力的增长,改善延性性 能,根据延性定义,提出优化目标表达式。

$$N_{\rm c} \geqslant 0.9 N_{\rm u} \tag{2}$$

式中: N_e 为 $N-\Delta$ 简化曲线上C点对应的承载力,如图9所示。

优化后的轴压短柱延性系数仍采用式(1)计算, 只需将式(1)中的 Δ_u 替换为 Δ_{u1} ,即: $\mu_{thk} = \Delta_{u1}/\Delta_y$, 其中 $\Delta_{u1} = (\Delta_c + \Delta_d)/2$,式中 Δ_c 和 Δ_d 分别为*N*- Δ 简 化曲线上*C*点和*D*点对应的轴向位移,因此 Δ_{u1} 取 值偏于保守。显然,优化后的轴压短柱延性系数 μ_{thk} 大于等于优化前的延性系数 μ_o .

2.2 延性优化计算式初探

通过分析,可以认为 CFRP 管及钢管对核心混 凝土的约束作用是影响内置 CFRP 管的方钢管混凝 土轴压短柱延性性能的主要因素。采用下降阶段 (BC)承载力最小与最大值之比(N_e/N_u)描述承载 力在该阶段的下降程度,并采用碳纤维和钢材约束 效应系数之比(ξ_i/ξ_s)综合考虑 CFRP 管与钢管约 束作用对试件延性的影响。

将试验参数 ξ_i 与 ξ_s 的上限值分别扩大至 3.02 与 0.85,采用有限元方法对内置 CFRP 管的方钢管混凝 土试件轴压工况进行多次计算,并绘制了 ξ_i/ξ_s 与 N_c/N_u 的关系曲线,如图 9 所示。(ξ_i/ξ_s)-(N_c/N_u) 关系曲线综合反应了 CFRP 管与钢管约束作用对短 柱轴压承载力在下降阶段(*BC*)力学性能的影响。随 着 ξ_i/ξ_s 逐渐增大, N_c/N_u 值初期急剧增加,随着 ξ_i/ξ_s 值继续增大, N_c/N_u 值增加速度趋于平缓。即,增强 CFRP 约束作用可以提高内置 CFRP 管的方钢管混凝 土轴压短柱的 N_e,且 CFRP 约束作用的增强,不会导 致 N_e 无限增加。表现为:下降阶段和恢复阶段 (BCD)曲线下降趋于平缓,接近理想曲线(BC'D),如 图 8 所示。此结论也可在图 2(c)中得证。

假定:1)随着 ξ_f/ξ_s 增长, N_c/N_u 呈对数增长,且 N_c 小于等于 N_u ;2)不考虑 CFRP 管与试件截面尺 寸对计算结果的影响。结合上述假定,采用麦夸特 法进行回归分析,得出(ξ_f/ξ_s)-(N_c/N_u)关系表达 式,见式(3)。

$$\frac{N_{\rm c}}{N_{\rm u}} = 1 - a {\rm e}^{b {\rm e}_{\rm f}/{\rm e}_{\rm s}} \tag{3}$$

式中: $a = 0.5 - 0.3\xi_s$; $b = 0.1 - 1.4\xi_s$

系数 a 和 b 均为关于方钢管的约束效应系数 ξ, 的 线性函数。式(3)考虑了方钢管与 CFRP 管的约束作 用对方钢管混凝土轴压试件延性性能的综合影响。

文献 [10] 对 2 根内置 CFRP 管 (内径为 130 mm)的方钢管混凝土短柱轴压试验进行了研 究,编号为 ZY4-0~ZY4-2 的试件方钢管约束效应 系数 ξ_s 为 0.409; 文献 [11] 对 12 根内置 CFRP 管 (内径为 90 mm)的方钢管混凝土短柱轴压试验进行 了研究,编号为 SC60~SC62 的试件方钢管约束效 应系数 ξ_s 为 0.915。笔者基于 5 个不同的方钢管约 束效应系数 ξ_s ,利用式(3)绘制的 ξ_i/ξ_s 与 N_c/N_u 关 系曲线与试验结果^[10-11,14-15]基本符合,如图 10 所示。

图 10 *ş*_i/*ξ*_s 与 *N*_c/*N*_u 关系计算与试验结果的比较

将优化目标表达式(2)代入式(3),经整理后得 到延性优化计算式

$$\boldsymbol{\xi}_{i} \ge f(\boldsymbol{\xi}_{s}) = \left[\frac{\ln 0.1 - \ln (0.5 - 0.3\boldsymbol{\xi}_{s})}{0.1 - 1.4\boldsymbol{\xi}_{s}}\right] \boldsymbol{\xi}_{s}$$
(4)

结合 ξ_s 与 ξ_t 的定义,利用式(4)可对内置 CFRP 管的方钢管混凝土轴压短柱的延性性能进行初步判 断,或对材料用量及材料强度进行选择,如表 2 所 示。 第4期

表 2 延性性能一览表													
序号	$\xi_{ m s}$	$f(\boldsymbol{\xi}_{\mathrm{s}})$	$\xi_{ m f}$	判断式	延性 性能	$N_{ m c}/N_{ m u}$	数据 来源						
1	0.689	0.857	1.500	$\xi_{\rm f} > f(\xi_{\rm s})$	较好	0.92	AS64[14]						
2	0.409	1.149	0.700	$\xi_{\rm f} < f(\xi_{\rm s})$	较差	0.89	$ZY4-2^{[10]}$						
3	0.915	0.630	0.336	$\xi_{\rm f} < f(\xi_{\rm s})$	较差	0.85	SC62[11]						

试验表明:符合式(4)要求的内置 CFRP 管的方 钢管混凝土轴心受压短柱承载力首次下降不大, N-Δ 关系曲线的 BCD 段弯折不明显,短柱延性较 好,如图 2(c)所示。否则,承载力下降显著,BCD 段 弯折明显,短柱延性较差,如图 11 所示。

关系曲线(ZY4-2 与 SC62)

3 结论

1)优化的内置 CFRP 管的方钢管混凝土试件的 延性性能较普通方钢管混凝土试件更好。

2) 内置 CFRP 管的方钢管混凝土轴心受压试件 失效的主要原因是由于 CFRP 管的断裂导致内核混 凝土失去约束作用,无法继续承受较大荷载。

3)CFRP 管具有足够的粘结长度,是内置 CFRP 管的方钢管混凝土试件充分发挥其力学性能的前提。

4)提出的表达式(3)较为合理,综合体现了方钢 管与 CFRP 管的约束作用对内置 CFRP 管的方钢管 混凝土轴压试件延性性能的影响。

5)优化计算式(4)可用于内置 CFRP 管的方钢 管混凝土轴压短柱延性的初步判断及材料选择。

参考文献:

- [1] Huang C S, Yeh Y K, Liu G Y, et al. Axial load behavior of stiffened concrete-filled steel columns [J]. Journal of Structural Engineering-ASCE, 2002, 128 (9): 1222-1230.
- [2] Cai J, He Z Q. Axial load behavior of square CFT stub column with binding bars [J]. Journal of Constructional

Steel Research, 2006, 62(5): 472-483.

- [3] Wang Y Y, Yang Y L, Zhang S M. Static behaviors of reinforcement-stiffened square concrete-filled steel tubular columns [J]. Thin-Walled Structures, 2012, 58: 18-31.
- [4]王志浩,成戎.复合方钢管混凝土短柱的轴压承载力[J]. 清华大学学报:自然科学版,2005,45(12):1596-1599.
 Wang Z H, Cheng R. Axial bearing capacity of composite-sectioned square concrete-filled steel tubes
 [J]. Journal of Tsinghua University: Science and Technology, 2005, 45(12): 1596-1599.
- [5]张扬,钱稼茹,纪晓东,等.内圆外方复合钢管混凝土短 柱轴压承载力试验研究[J].世界地震工程,2011,27
 (3):40-46.

Zhang Y, Qian J R, Ji X D, et al. Experimental study on axial compressive strength of concrete filled composite steel tube short columns [J]. World Earthquake Engineering, 2011, 27(3): 40-46.

- [6] Tao Z, Han L H, Zhuang J P. Axial loading behavior of CFRP strengthened concrete-filled steel tubular stub columns [J]. Advances in Structural Engineering, 2007, 10(1): 37-46.
- [7] Sundarraja M C, Prabhu G G. Experimental study on CFST members strengthened by CFRP composites under compression [J]. Journal of Constructional Steel Research, 2012, 72: 75-83.
- [8] 王先铁,马尤苏夫,王连坤,等.方钢管混凝土框架抗震 性能试验研究与非线性有限元分析[J].地震工程与工 程振动,2013,33(4):126-133.

Wang X T, Ma Y S F, Wang L K, et al. Experimental study and nonlinear finite element analysis of seismic behavior of concrete-filled square steel tubular frame [J]. Journal of Earthquake Engineering and Engineering Vibration, 2013, 33(4): 126-133.

- [9] Wang J F, Chen X Y, Shen J. Performance of CFTST column to steel beam joints with blind bolts under cyclic loading [J]. Thin-Walled Structures, 2012, 60: 69-84.
- [10] 李帼昌,邢娜,邢忠华.内置 CFRP 圆管的方钢管高强混 凝土轴压短柱试验[J]. 沈阳建筑大学学报:自然科学 版,2009,25(2):244-246.

Li G C, Xing N, Xing Z H. Experimental study on short columns of high strength concrete filled square steel tube with inner CFRP circular tube under axial compressive load [J]. Journal of Shenyang Jianzhu University: Natural Science, 2009, 25(2): 244-246.

[11] 麻丽. 内置 CFRP 圆管的方钢管高强砼轴压短柱试验研 究[D]. 沈阳:沈阳大学,2007:20-27.