doi:10.11835/j.issn.1674-4764.2016.01.002



# 配置 HRB500 钢筋小跨高比带板开缝连梁的<sup>高离</sup> 抗震性能试验研究

刘瑞欣1,王敏1,陈晓磊1,朱文博2,傅剑平1

(1. 重庆大学 土木工程学院, 重庆 400045; 2. 重庆市设计院, 重庆 400015)

摘 要:为了防止联肢剪力墙中小跨高比连梁发生低延性剪切破坏,在单连梁中部设置一条通缝, 形成开缝连梁改善其抗震性能。试验完成了3个小跨高比带板开缝连梁的低周反复加载,通过与 其他配筋形式连梁对比,分析了开缝连梁的破坏形态、滞回特征、承载力退化、刚度退化、延性、耗能 等一系列抗震性能。利用软件 ABAQUS 对试件滞回曲线的骨架曲线进行模拟,并将模拟结果和 试验结果相对比。结果表明,小跨高比开缝连梁具有良好的承载能力及变形能力,施工较为方便且 经济,能有效防止小跨高比连梁延性较差的剪切破坏,具有较好的抗震性能,可在实际工程中推广。 关键词:开缝连梁;小跨高比连梁;带板;抗震性能;钢筋

**中图分类号:**TU375.1 文献标志码:A 文章编号:1674-4764(2016)01-0009-08

# Experimental analysis on seismic behavior of small-span-to-depth-ratio slotted coupling beams with slab and HRB500 bar

Liu Ruixin<sup>1</sup>, Wang Min<sup>1</sup>, Chen Xiaolei<sup>1</sup>, Zhu Wenbo<sup>2</sup>, Fu Jianping<sup>1</sup>

(1. School of Civil Engineering, Chongqing University, Chongqing 400045, P. R. China;

2. Chongqing Architectural Design Institute, Chongqing 400015, P. R. China.)

Abstract: Small-span-to-depth-ratio coupling beams of shear wall can be formed with a crack in the middle to prevent from shear failure and improve the seismic performance. Three coupling beams with same small-span-to-depth-ratio were tested under cyclic loading. Comparing the results of slotted coupling beams with other coupling beams of different forms of reinforcement, we analyzed the seismic behavior of the slotted coupling beam, including failure pattern, hysteresis loop, strength degradation, stiffness degradation, ductility and energy dissipation. We simulated skeleton curve of specimens' hysteresis curve by using ABAQUS and compared the simulation result mith the experiment result. The results show that slotted coupling beams with small-span-to-depth-ratio have good performance of bearing capacity and deformation. They can be constructed conveniently and economically. Besides, with the good seismic performance, small-span-to-depth-ratio coupling beams could prevent from shear failure effectively and be applied well in practical engineering.

Keywords: slotted coupling beam; small-span-to-depth-ratio; slab; seismic performance; bar

收稿日期:2015-07-30

**基金项目:**国家自然科学基金(51478063)

作者简介:刘瑞欣(1992-),女,主要从事钢筋混凝土结构工程研究,(E-mail) liuruixin0120@163.com。 Received:2015-07-30

Foundation item: National Natural Science Foundation of China (No. 51478063)

Author brief: Liu Ruixin (1992-), main interest: RC structure, (E-mail)liuruixin0120@163.com.

在剪力墙结构、框架-剪力墙结构、框架-核心筒 结构中,常出现小跨高比连梁。众所周知,连梁作为 联肢墙的第一道抗震设防防线,应具有良好的变形 耗能能力,然而小跨高比连梁延性较差,容易发生剪 切破坏。因此,对连梁的设计至关重要。学者们根 据小跨高比连梁的特征采用了不同的配筋方案。 Paula 等<sup>[1]</sup>提出了在小跨高比连梁内加设对角暗撑 的配筋方案,Tegos等<sup>[2]</sup>提出了菱形配筋方案,文献 [3-4]提出了复合斜配筋方案。以上配筋改进方案 虽然不同程度地改进了连梁的抗震性能,但也加大 了施工难度,由于钢筋配置较拥挤,骨架需要相互贯 穿,难以保证混凝土浇筑质量。目前,工程界提出了 在连梁中间位置设置一条通缝的方案,使得上下两 个分梁的跨高比增大,从而增大了连梁的变形能力, 有效防止小跨高比连梁发生剪切破坏。文献[5-10] 对开缝连梁构件进行了试验分析,但以往试验均没 有考虑现浇楼板对连梁受力性能的影响,与实际工 程不符,因此有必要进一步研究带板开缝连梁的抗 震性能。笔者设计了 3 个配置 500 MPa 钢筋的带 板开缝连梁,且对这3个相同小跨高比试件进行低 周反复加载试验,将试验结果与相同跨高比的其他 配筋形式连梁对比,总结分析其破坏形态、承载力、 刚度、延性、耗能能力,进一步认识开缝连梁的力学 性能。

# 1 试验设计

#### 1.1 试件设计

笔者完成了3个带板开缝连梁的试验,分别为 CB-K3、CB-K4、CB-K8,其跨高比均为2.0,中间设 置100 mm宽的通缝,3个试件的通缝位置有所差 异。每个试件的两分梁均按照普通细长连梁绑扎钢 筋形成开缝连梁骨架,连梁纵筋为HRB500钢筋,箍 筋采用 HRB335 钢筋,板筋采用 HRB235 钢筋,使 用同等强度 C30 混凝土进行浇筑养护,从而形成小 跨高比开缝连梁试件。本文还加入文献[11]的相同 跨高比试件 CB-K5,具体尺寸及配筋如图 1,各试件 参数值如表 1~3 所示。为了更清晰直观的了解开 缝连梁受力性能,将其与之前完成的 HRB500 其他 形式配筋小跨高比连梁进行对比,包括普通配筋连 梁、对角斜配筋连梁、交叉斜筋连梁,尺寸及配筋如 图 2 所示。将以上 7 个相同跨高比试件分为两组进 行对比,第1 组是 CB-K3、CB-K4、CB-22C,剪压比均 为 0.2;第 2 组是 CB-K5、CB-K8、CB-40、CB-X4C,剪 压比均为 0.25。



图 1 开缝连梁尺寸及配筋



slotted coupling beams



Fig. 2 Reinforcement detailing of CB-22C, CB-40 and CB-X4 C

表 1 CB-K3、CB-K4、CB-K5、CB-K8 参数值 Table 1 Test parameters of CB-K3, CB-K4, CB-K5 and CB-22C

| 试件    | 梁高    | /mm   | 配筋情况           |               |                |                  |                |               |                  |                   |
|-------|-------|-------|----------------|---------------|----------------|------------------|----------------|---------------|------------------|-------------------|
| 编号    | $L_1$ | $L_2$ | 0              | 2             | 3              | 4                | 5              | 6             | $\bigcirc$       | 8                 |
| CB-K3 | 350   | 350   | <b>\$6@100</b> | 4 <b>¢</b> 20 | <b>\$6@100</b> | <b>\$</b> 12@100 | 4 <b>\$</b> 20 | 4 <b>¢</b> 20 | <b>\$</b> 12@100 | 4 <b>¢</b> 20     |
| CB-K4 | 300   | 400   | <b>\$6@100</b> | 4 <b>¢</b> 20 | <b>\$6@100</b> | <b>\$</b> 12@100 | 4 <b>¢</b> 20  | 4 <b>¢</b> 20 | <b>\$</b> 12@100 | 4 <b>¢</b> 20     |
| CB-K5 | 350   | 350   | <b>\$6@100</b> | 2 <b>¢</b> 16 | <b>\$6@100</b> | <b>\$</b> 10@100 | 3 <b>¢</b> 20  | 4 <b>¢</b> 16 | <b>\$</b> 10@100 | 3 <b>¢</b> 20     |
| CB-K8 | 400   | 300   | <b>\$6@100</b> | 2 <b>¢</b> 16 | <b>\$6@100</b> | <b>\$</b> 10@80  | 2 <b>¢</b> 16  | 3 <b>¢</b> 20 | <b>\$</b> 10@150 | 2\$\phi20+2\$\$16 |

注:配筋①~⑧表示图1中开缝连梁纵筋及箍筋的配筋类别。

表 2 试件钢筋的力学性能 Table 2 Properties of reinforcing bars

| 钢筋<br>直径    | 屈服强度/<br>(N•mm <sup>-2</sup> ) | 极限强度/<br>(N・mm <sup>-2</sup> ) | 弾性模量/<br>(10 <sup>5</sup> N・mm <sup>-2</sup> ) |
|-------------|--------------------------------|--------------------------------|------------------------------------------------|
| <b>¢</b> 20 | 516.6                          | 695.8                          | 2.05                                           |
| <b>¢</b> 16 | 529.1                          | 700.8                          | 2.02                                           |
| <b>¢</b> 12 | 353.4                          | 550.9                          | 1.80                                           |
| <b>¢</b> 10 | 425.9                          | 607.1                          | 1.89                                           |
| <b>ø</b> 6  | 341.7                          | 511.7                          | 2.40                                           |

表 3 试件混凝土的力学性能

Table 3Properties of concrete

| 试件名称  | $f_{\rm cu}/$ (N • mm <sup>-2</sup> ) | $f_{\rm c}/~({\rm N} \cdot {\rm mm}^{-2})$ | $f_t$ / (N • mm <sup>-2</sup> ) |
|-------|---------------------------------------|--------------------------------------------|---------------------------------|
| CB-K3 | 25.8                                  | 19.6                                       | 2.36                            |
| CB-K4 | 28.9                                  | 22.0                                       | 2.51                            |
| CB-K5 | 25.9                                  | 19.7                                       | 2.37                            |
| CB-K8 | 30.0                                  | 22.8                                       | 2.56                            |

注: $f_{\rm c} = 0.76 f_{\rm cu}$ 

#### 1.2 装置及加载制度

为了方便加载,试验将构件旋转 90°放置,试验 装置如图 3 所示。水平作动器通过 L 型梁将水平力 传递给试件。在实际工程中,连梁的反弯点常位于 中点位置,为了使构件受力更符合实际情况,在试验 中将水平作动器对准连梁中轴线位置。



图 3 试验加载装置 Fig. 3 Test loading equipment

试验采用位移控制的方法进行加载。参照美国 ACI T1.1-1 试验加载制度,采用位移角推算出来的 位移值大小进行加载,每一级加载循环2次,直至试 验结束,加载程序如图4所示。判别试件失效是以 承载力下降到峰值荷载的85%为依据,并将其所达 到的位移作为"极限位移"。



- 2 试验现象
- 2.1 试件 CB-K3、CB-K4 和 CB-22C 对比

试件 CB-K3、CB-K4 和 CB-22C 的破坏形式如

图 5 所示。对于试件 CB-K3 和 CB-K4,梁端屈服时,剪压区形成密集的扇形裂缝,从极限状态来看, 开缝连梁的两个分梁发生破坏的时间均不相同,不 带板分梁先发生破坏,带板的分连梁较后发生剪切 破坏;对于试件 CB-22C,屈服时,裂缝发展较开缝连 梁稀疏,出现了对角斜裂缝,最终以近梁端剪切破坏 达到极限状态。



**2.2** 试件 CB-K5、CB-K8、CB-40 和 CB-X4C 对比 试件 CB-K5、CB-K8、CB-40 和 CB-X4C 的破坏

形式如图 6 所示。对于试件 CB-K5 和 CB-K8,梁端 屈服时,剪压区出现了密集的扇形裂缝,最终不带板 分梁先破坏,带板分梁后发生剪切破坏;对于试件 CB-40,梁端屈服时,出现明显的剪压区扇形裂缝,最 终发生梁端滑移型剪切破坏;对于试件 CB-X4C,梁 端屈服时,出现明显的对角斜裂缝,最终梁端滑移形 成剪切破坏。



图 6 试件 CB-K5、CB-K8、CB-40 与 CB-X4C 的破坏现象 Fig. 6 Failure phenomenonof CB-K5, CB-K8, CB-40 and CB-X4C

# 3 抗震性能

#### 3.1 滞回曲线

试件 CB-K3、CB-K4 和 CB-22C 的滞回曲线如 图 7 所示,从图中可以看出,CB-K3 和 CB-K4 相对 于 CB-22C 而言,极限承载能力较大,承载力退化较 快,屈服位移和极限位移较大,滞回曲线的捏缩现象 较严重。



图 7 试件 CB-K3、CB-K4、CB-22C 的滞回曲线

Fig. 7 The hysteresis curves of CB-K3, CB-K4 and CB-22C

试件 CB-K5、CB-K8、CB-40 和 CB-X4C 的滞回 曲线如图 8 所示,从图中可以看出 CB-X4C 的承载 力较高,峰值后的承载力退化速度较慢,滞回曲线较 饱满;CB-K5 和 CB-K8 的承载力较高,承载力退化 较快,屈服位移与极限位移较大,滞回曲线的捏缩现 象明显;CB-40 承载力最小,承载力退化快,屈服位 移与极限位移小,捏缩现象较严重。



图 8 试件 CB-K5、CB-K8、CB-40 与 CB-X4C 的滞回曲线 Fig. 8 The hysteresis curves of CB-K5, CB-K8, CB-40 and CB-X4C

# 3.2 承载能力退化

试件的承载能力退化状况可以按式(1)的承载 力降低系数来表示

$$\lambda_i = \frac{Q_i^2}{Q_i^1} \tag{1}$$

式中: $\lambda_i$ 为达到*i*倍屈服位移时,试件的承载能力降 低系数; $Q_i^2$ 为达到*i*倍屈服位移时,第2次加载循环 的峰值荷载; $Q_i^1$ 为达到*i*倍屈服位移时,第1次加载 循环的峰值荷载。

对于试件 CB-K3、CB-K4 和 CB-22C,承载力退 化系数对比如图 9 所示,加载前期,开缝连梁和交叉 斜筋连梁的承载力退化均较缓慢,当转角超过1/100 后,承载力退化加快。试件 CB-K3 和 CB-K4 的强屈 比较低,CB-22C 的强屈比略高,可以看出交叉斜筋 梁比开缝连梁的能量储备能力略高。

对于试件 CB-K5、CB-K8、CB-40 和 CB-X4C,承载力退化系数对比如图 10 所示,加载前期,试件





CB-K5、CB-K8 和 CB-X4C 的承载力退化速度均较 缓慢,普通配筋连梁承载力急速退化,当构件转角达 到 1/50 后,开缝连梁和对角斜筋连梁的承载力退化 加快。试件 CB-K5、CB-K8、CB-40 的强屈比较低, 试件 CB-X4C 的强屈比较高,可以看出普通配筋梁 和开缝连梁的能量储备能力相较于对角斜筋连梁 较差。



![](_page_4_Figure_5.jpeg)

#### 3.3 刚度退化

为了更好地反映试件在低周反复荷载作用下随 着转角增大的刚度退化情况,在试验中,将每一级第 1次循环加载的环线刚度作为标准来反映构件刚度 退化的规律,环线刚度的定义如图 11 所示,按式(2) 计算。通过对各开缝连梁构件的环线刚度计算,得 到刚度退化曲线对比图,见图 12、图 13。

$$K_{\theta} = \frac{P_{\theta}^+ + P_{\theta}^-}{\Delta_{\theta}^+ + \Delta_{\theta}^-} \tag{2}$$

式中:  $K_{\theta}$ 为构件转角为 $\theta$ 时,其环线刚度;  $P_{\theta}^{+}$ , $P_{\theta}^{-}$ 分别为构件转角为时,其对应正、反向荷载值;  $\Delta_{\theta}^{+}$ , $\Delta_{\theta}^{-}$ 分别为构件转角为时,其对应正、反向位移值。

对于试件 CB-K3、CB-K4 和 CB-22C,带板开缝

![](_page_4_Figure_11.jpeg)

连梁 CB-K3 和 CB-K4 的初始刚度明显小于交叉斜 筋连梁 CB-22C,随着试件转角的增大,开缝连梁的 刚度退化速度明显慢于交叉斜筋连梁。

对于试件 CB-K5、CB-K8、CB-40 和 CB-X4C,带 板开缝连梁 CB-K5 和 CB-K8 的初始刚度小于对角 斜筋连梁 CB-X4C 和普通配筋连梁 CB-40,随着试 件转角的增大,普通配筋连梁的刚度退化速度最快, 开缝连梁的刚度退化速度慢于交叉斜筋连梁。

#### 3.4 延性及变形能力

位移延性系数可以反映构件从屈服状态到极限 状态的变形能力;构件位移角可以反应试件最大绝 对变形能力。因此,采用位移延性系数和构件位移 角来研究构件的延性及变形能力。

对于试件 CB-K3、CB-K4 和 CB-22C, 位移延性 系数和最大构件位移角结果如表 4 所示。带楼板开 缝连梁 CB-K3 和 CB-K4 的位移延性系数比交叉斜 筋连梁 CB-22C 小, 位移延性较差, 但 CB-K3 和 CB-K4 的最大相对位移角比 CB-22C 大, 说明开缝连梁 的最大绝对变形能力比交叉斜筋连梁好。

# 表 4 试件 CB-K3、CB-K4 与 CB-22C 的位移延性系数 和构件位移角

 Table 4
 Displacement ductility coefficient and drift

 angle of CB-K3, CB-K4 and CB-22C

| 试件名称   | 位移延性系数 | 构件位移角 |
|--------|--------|-------|
| CB-K3  | 2.47   | 1/52  |
| CB-K4  | 2.62   | 1/54  |
| CB-22C | 5.3    | 1/82  |

对于试件 CB-K5、CB-K8、CB-40 和 CB-X4C, 位 移延性系数和最大构件位移角结果如表 5 所示, 普 通配筋连梁 CB-40 和带板开缝连梁 CB-K5 和 CB-K8 的位移延性系数比对角斜筋连梁 CB-X4C 小, 位 移延性较差。从最大构件位移角来看, 试件 CB-40 的最大构件位移角比 CB-K5、CB-K8 和 CB-X4C 小, 说明开缝连梁及对角斜筋连梁的最大绝对变形能力 较好。

# 表 5 试件 CB-K5、CB-K8、CB-40 与 CB-X4C 的位移 延性系数和构件位移角

Table 5 Displacement ductility coefficient and drift angle of CB-K5, CB-K8, CB-40 and CB-X4C

| 试件名称   | 位移延性系数 | 构件位移角 |
|--------|--------|-------|
| CB-K5  | 3.33   | 1/42  |
| CB-K5  | 3.13   | 1/51  |
| CB-40  | 3.45   | 1/101 |
| CB-X4C | 5.55   | 1/46  |

#### 3.5 耗能性能

结构在地震作用下吸收能量,通过反应变形耗 散能量,从而保证结构进入非线性阶段的安全性。 在滞回曲线中,一级一次正反向加载卸载环线面积 表示结构耗散能力的大小,加载时曲线和坐标轴围 成的面积表示结构所吸收的能量,通过二者之比可 以反映试件的耗能能力。采用式(3)等效粘滞阻尼 系数 *h*<sub>eq</sub>,如图 14 所示,系数越大滞回曲线越饱和, 耗能性能越好。

![](_page_5_Figure_14.jpeg)

Fig. 14 The definition of energy for specimens

对于试件 CB-K3、CB-K4 和 CB-22C,粘滞阻尼系 数如图 15 所示,从图中可以看出交叉斜筋连梁 CB-22C 的系数明显大于带板开缝连梁 CB-K3 和 CB-K4, 说明开缝连梁的耗能能力比交叉斜筋连梁差。

![](_page_5_Figure_17.jpeg)

Fig. 15 The coefficients  $h_{eq}$  of CB-K3, CB-K4 and CB-22C

对于试件 CB-K5、CB-K8、CB-40 和 CB-X4C,粘 滞阻尼系数如图 16 所示,从图中可以看出带板开缝 连梁 CB-K5 和 CB-K8 的粘滞阻尼系数小于对角斜 筋连梁 CB-X4C,而普通配筋连梁 CB-40 的初始粘 滞阻尼系数较大,但随着构件位移转角的增大,粘滞 阻尼系数降低较快,可以说明对角斜筋连梁的耗能 性能优于开缝连梁及普通配筋连梁。

![](_page_5_Figure_20.jpeg)

# 4 有限元分析

为了更好的研究开缝连梁的抗震性能,利用有 限元分析软件 ABAQUS,选用混凝土塑性损伤模 型<sup>[12-15]</sup>及钢筋双线性模型,对 CB-K3、CB-K4、CB-K8 三个试件进行分析。对于单元类型的选取,混凝 土采用了线性减缩积分单元,可以有效地提高计算 效率,且单元在存在扭曲变形的情况下,精度不会受 明显影响;钢筋采用了线性桁架单元来模拟承受轴 向拉压的性能。在有限元分析中,网格密度决定了 计算模型的时间以及模拟结果的精确程度。通过 ABAQUS 自动划分命令来进行单元网格的划分,且 采用自动增量步法和通用法对模型进行增量控制及 迭代计算。

并将模型和试验的荷载--位移曲线、破坏形态、 钢筋应力分布结果进行对比,如图 17、图 18 所示, 得到以下结论:

![](_page_6_Figure_5.jpeg)

![](_page_6_Figure_6.jpeg)

![](_page_6_Figure_7.jpeg)

Fig. 18 PEMAG figures of failure type of specimens

循环加载下的承载力以及侧向刚度均有所减小。

2)PEMAG为非累加塑性应变值,其塑性应变 云图能够表明构件的开裂情况。图 18 为试件承载 力下降到极限承载力的 85%时的构件破坏情况,与 试验得出的试件破坏情况吻合较好。但带板分连梁 在模拟分析中发生了跨中较为明显的破坏,而试验 中发生了近梁端处的破坏,且带板连梁先破坏,有限 元模拟结果和试验真实值有所偏差。

# 5 结 论

通过试验,将小跨高比带板开缝连梁和其他形 式配筋梁的对比分析可以得到以下结论:

1) 开缝连梁具有较好的承载能力,且承载力退
 化较慢,相较于普通配筋梁而言有明显的改善。

2) 开缝连梁中间开缝,初始刚度有所减小,但 相较于其他形式的配筋梁而言,开缝连梁的刚度降 低速度较慢,极限变形较大。

3)小跨高比开缝连梁的位移延性系数只能勉强达到一级抗震联肢墙洞口连梁的位移延性需求, 其屈服后的延性能力较弱,有待于进一步改善,但开 缝连梁的最大相对位移角较大,绝对变形能力较好。

4) 尽管开缝连梁的抗震性能比交叉斜筋连梁 和对角斜筋连梁较弱,但从施工复杂程度以及经济 效益方面来看,开缝连梁方案明显较优,不仅减小了 连梁的跨高比,防止了小跨高比连梁的剪切破坏,还 方便施工,有利于混凝土竖向浇筑以及高层的管线 穿行,具有很高的实际应用价值。

#### 参考文献:

- [1] Paulay T, Binney J R. Diagonally reinforced coupling beams of shear walls [J]. ACI Special Publication, 1974, 2:579-598.
- [2] Tegos I A, Penelis G G. Seismic resistance of short columns and coupling beams reinforced with inclined bars [J]. ACI Structural Journal, 1998(1):82-88.
- [3]皮天祥,白绍良,傅剑平.小跨高比对角斜筋连梁受力

性能试验及模拟[J]. 土木建筑与环境工程,2009,31 (3):48-54.

Pi T X, Bai S L, Fu J P. Experiment and simulation of bearing behavior for diagonally reinforced coupling beams with small length to height ratio [J]. Journal of Civil, Architectural & Environmental Engineering, 2009,31(3):48-54. (in Chinese)

[4]傅剑平,皮天祥,韦锋,等.钢筋混凝土联肢墙小跨高比 复合斜筋连梁抗震性能试验研究[J].土木工程学报, 2011,44(2):57-64.

Fu J P, Pi T X, Wei F, et al. Experimental study on seismic behaviors of small-aspect-ratio coupling beams in RC structural walls proportioned with combined slanting reinforcements [J]. China Civil Engineering Journal, 2011,44(2):57-64. (in Chinese)

[5]李奎明,李杰. 钢筋混凝土双连梁短肢剪力墙结构试验 研究[J]. 同济大学学报:自然科学版,2009,37(5): 587-596.

Li K M, Li J. Experimental study on reinforced concrete short-leg shear walls with dual binding beams [J]. Journal of Tongji University: Natural Science, 2009, 37(5):587-596. (in Chinese)

[6]朱炳寅.对"双连梁"的认识与设计建议[J].建筑结构, 2008,38(11):12-13.

Zhu B Y. Understanding and design proposal of coupling beams [J]. Building Structure, 2008,38(11): 12-13. (in Chinese)

[7] 胥玉祥,朱玉华,赵昕,等. 双连梁受力性能研究[J]. 结构工程师,2010,26(3):31-37.

Xu Y X, Zhu Y H, Zhao X, et al. Research on dual coupling beams based on mechanical performance [J]. Structural Engineers, 2010, 26 (3): 31-37. (in Chinese)

[8] 蔺立新. 设水平直缝的连梁在筒体结构体系中的应用 [J]. 山西建筑,2005,31(19):61-62. Lin L X. Application of lintel with level straight in tube

structure system [J]. Shanxi Architecture, 2005, 31 (19):61-62. (in Chinese)

[9]丁永君,于敬海,李端,等. 高强钢筋高强混凝土双连梁

剪力墙抗震性能试验研究[J]. 建筑结构学报,2015,36 (3):56-63.

Ding Y J, Yu J H, Li D, et al. Experimental study on seismic behavior of high strength reinforced concrete double coupling beam shear wall [J]. Journal of Building Structures, 2015, 36(3):56-63. (in Chinese)

- [10] 张海,孙益欢,王玉良,等. 钢筋混凝土双连梁受力性能研究[J]. 建筑结构,2014,44(5):25-28.
  Zhang H, Sun Y H, Wang Y L, et al. Mechanical behavior study of reinforced concrete dual coupling beams[J]. Building Structure, 2014, 44(5):25-28. (in Chinese)
- [11] 闵辉. 配置 HRB500 钢筋小跨高比双连梁抗震性能试验研究[D]. 重庆:重庆大学,2012.
  Min H. Experimental research on seismic behavior of small-span-to-depth-ratio dual coupling beams with HRB500 bar [D]. Chongqing: Chongqing University, 2012. (in Chinese)
- [12] 刘巍,徐明,陈忠范. ABAQUS 混凝土损伤塑性模型参数标定及验证[J]. 工业建筑, 2014(Sup1):167-171.
  Liu W, Xu M, Chen Z F. Parameters calibration and damage plasticity verification of concrete modal of ABAQUS [J] Industrial Construction, 2014(Sup1): 167-171. (in Chinese)
- [13] Kang H D, William K J. Localization characteristics of triaxial concrete model [J]. Journal of Engineering Mechanics ASCE, 1999, 125: 941-950.
- [14] Park H, Kim J Y. Plasticity model using multiple failure criteria for concrete in compression [J]. International Journal of Solids Structures, 2005, 42: 2303-2322.
- [15] 张战廷,刘字锋. ABAQUS 中的混凝土塑性损伤模型
  [J]. 建筑结构,2011(Sup2):229-231.
  Zhang Z Y, Liu Y F. Concrete damaged plasticity model in ABAQUS [J]. Building Structure, 2011 (Sup2):229-231. (in Chinese)

(编辑 胡英奎)