doi:10.11835/j.issn.1674-4764.2016.03.002

紧邻立交桥的连续墙受力分析和安全性评价

陈江1,阳军生1,陈思明2,张学民1,欧雪峰1

(1. 中南大学 土木工程学院,长沙 410075;2. 中铁建设投资集团有限公司,广东 深圳 518055)

摘 要:以深圳地铁车公庙交通枢纽 7 & 9 号线车站深基坑工程为研究背景,选取典型的监测断面,埋置混凝土应变计,进行地下连续墙的内力测试,分析了连续墙在深基坑开挖过程中的内力变 化规律,并对连续墙的安全性进行了评价,得到以下结论:随着基坑开挖深度的增加,地下连续墙的 内力变化越发明显,基坑负二层和负三层开挖对连续墙的内力变化影响较大,应重点关注和监测; 根据现场测试数据得到两侧地下连续墙的内力变化并非完全一致,主要受到紧邻基坑开挖和周边 建筑物的影响;最后计算得到地下连续墙处于安全状态。

关键词:地下连续墙;现场测试;弯矩;安全系数

中图分类号:TU28 文献标志码:A 文章编号:1674-4764(2016)03-0012-06

Force analysis and security assessment of diaphragm walls adjacent overpasses

Chen Jiang¹, Yang Junsheng¹, Chen Siming², Zhang Xuemin¹, Ou Xuefeng¹

School of Civil Engineering, Central South University, Changsha 410075, P. R. China;
 Construction & Investment Group Co. Ltd., Shenzhen 518055, Guangdong, P. R. China)

Abstract: A typical measurement—section was selected, and concrete strain meters were embedded to make measurement for diaphragm walls on the construction of Station of Metro Line 7&9 of Chegongmiao Station of Shenzhen Metro. The internal force change of diaphragm walls was discussed, and the reliability of diaphragm walls was evaluated. Results showed that with the increasing of the excavation depth of foundation pits, the variation of stresses of diaphragm walls was observable. According to the strain data from field measurement, safety factors of diaphragm walls were calculated, which turned out to meet national code. Meanwhile, it can be concluded that diaphragm walls were in the safe status. In the end, the variation relationship of their internal force, which would provide some references for the design and construction of similar projects in the future, was obtained.

Keywords: diaphragm wall; field measurement; bending moments; safety factor

随着中国城市地铁的大规模建设,施工中常遇 到一些问题,尤其是地铁车站深基坑施工的安全 性,受到了工程建设者和专家的广泛关注。为了确 保深基坑施工过程的安全,对地下连续墙在施工过

收稿日期:2016-03-03

基金项目:国家自然科学基金(51378505、50808178);中国中铁股份有限公司科技开发计划(2012-19)

作者简介:陈江(1985-),男,博士生,主要从事地下工程研究,(E-mail) chenjianggood@163.com。

Received: 2016-03-03

Foundation item: National Natural Science Foundation of China (No. 51378505, 50808178); Technology Development Program of China Railway Group Limited (No. 2012-19)

Author brief: Chen Jiang(1985-), PhD candidate, main research interest: underground project, (E-mail) chenjianggood@ 163. com.

程中的受力变化规律进行研究十分必要。由于缺 少对地下连续墙内力的现场测试,对地下连续墙在 施工过程中的受力变化规律进行研究就比较困难, 因此,对连续墙进行内力测试是直接和有效的 手段。

对地下连续墙的研究,许多学者通过室内试验 和现场水平位移监测来进行。Emilios 等^[1]研究了 地下连续墙的成槽和浇筑过程中对周边建筑物的影 响,但对连续墙的内力没有研究;Anthony 等^[2]、 Wyjadlowski 等^[3]对地下连续墙在基坑开挖过程中 的稳定性进行了研究;在地下连续墙内力的现场测 试方面,石钰锋等[4]通过对连续墙进行水平位移的 实测,得到了偏压基坑地下连续墙的水平位移变化 规律,并对基坑围护结构的稳定性进行了评价;王树 英等[5]通过埋置混凝土应变计得到结构底板的内力 变化规律; Yasushi 等^[6]、Paolo 等^[7]、Chu 等^[8]、 Nicoleta 等^[9]通过室内试验和数值分析对地下连续 墙的优化设计;Luis 等[10-11] 通过数值分析研究了双 层地下连续墙受力变化规律;Tan 等^[12]对上海大型 基坑开挖对连续墙和结构板的水平位移和竖向位移 以及周边建筑物的沉降进行了研究,为上海地区地 下连续墙设计和施工提出了一些建议。

大多数学者的研究都通过数值模拟的方法来 分析基坑开挖过程中地下连续墙的内力和位移的 变化,对基坑开挖过程中地下连续墙的现场内力测 试方面研究较少。本文以深圳地铁车公庙交通枢 纽7 & 9 号线地铁车站基坑为研究背景,选择典型 的监测断面,埋置混凝土应变计,进行了地下连续 墙内力测试,获得了地下连续墙的轴力和弯矩变化 规律。

1 工程概况

车公庙枢纽站为既有地铁1号线与新建7 & 9、11号线综合换乘枢纽站,位于深圳市福田区深南 大道与香蜜湖路交叉处西南角。7 & 9号线车站基 坑紧邻香蜜湖立交桥和换乘大厅基坑以及物业开发 基坑,车站整体为地下3层三柱四跨结构,车站全长 315 m,监测断面所在的盖挖逆作段基坑长246.54 m,基坑宽41.2 m,深约25.3~26.4 m;7 & 9号线 车公庙站基坑均采用1 m厚地下连续墙作为围护结 构^[13](如图1,图2所示)。

地层情况主要为粉质粘土,砾质粘土,全风化花 岗岩,强风化花岗岩(如图3所示)。

图 1 施工现场 Fig. 1 Construction site

图 2 内力测试平面示意图 Fig. 2 Measurement plan

7 & 9 号线地铁车站基坑的现场施工工序及对 应的完成时间见表 1。

表1 施工工序

Table 1 Construction process

施工过程	完成时间
工序1:施作车站基坑连续墙	2014-01
工序 2: 施作十字型钢柱	2014-02
工序 3:除去车站顶板覆土	2014-03
工序 4: 施作车站顶板	2014-04
工序 5:回填车站顶板覆土	2014-04
工序 6: 开挖车站基坑的负 1 层	2014-06
工序 7: 施作车站第1层中板	2014-07
工序 8: 开挖车站基坑的负 2 层	2014-08
工序 9: 施作车站第 2 层中板	2014-09
工序 10: 开挖车站基坑的负 3 层	2014-10
工序 11:施作车站的底板	2014-11

2 地下连续墙内力测试方案

根据车公庙站换乘枢纽总平面图并结合施工现 场情况,准备在地下连续墙 E6 和 W7 各埋设 7 对智 能混凝土应变计;共计 28 个智能混凝土应变计(如 图 3、图 4 所示)。在连续墙不同深度不同位置的主 筋上埋置混凝土应变计,固定在连续墙不同深度位 置内外侧竖向主筋上,通过导线统一引到冠梁上部。

图 4 现场埋置元件图 Fig. 4 Installation site

3 连续墙内力测试的结果分析

3.1 地下连续墙 E6 的内力测试结果分析

2014 年 1 月 17 日,地下连续墙 E6 冠梁施工完 成后,开始采集应变数据,从图 5 和图 6 可以看出: 1)从顶板覆土开始开挖(2 月 27 日),地下连续墙的 应变值发生明显变化,从地下连续墙 E6 测点最大的 拉应变为 813 με,地下连续墙 N21 测点最大压应变 为-392 με;2)由于地下连续墙 E6 的许多混凝土 应变计已经损坏,所以图 6 和图 7 的应变曲线未呈 现明显的对称性;3)随着基坑的开挖深度增加,大 多数测点的应变值变化明显;工序 8 和工序 9 施工 时,混凝土应变计的测试数据变化幅度最大;4)每 道工序在埋置混凝土测试元件附近施工时,测点应 变值变化较大,各条曲线表现为波动明显,在远离埋 置混凝土测试元件施工时,测点应变值变化很小,各 条曲线表现为平滑;5)d51、d52 和 d32 测点应变值 变化较大,主要由于这几个测点的混凝土应变计埋 深较浅,受开挖的扰动的影响较大。施工完成后,混 凝土应变计的测试数据变化很小,最后趋于稳定。

-200¹ 注: ____ d12 ___ d32 ___ d42 ----- d62 图 6 地下连续墙 E6 应变随时间变化曲线(内侧) Fig. 6 Development of strain versus time for diaphragm wall E6

根据混凝土应变计测得应变值,计算地下连续 墙 E6 的轴力和弯矩,如图 7 和图 8 所示。从图 7 看 出,在工序 8(开挖车站基坑的负 2 层)之前,地下连 续墙的轴力变化较小,但是,从工序 7(施作车站第 1 层中板)开始,连续墙轴力变化逐渐增大,工序 10 (开挖车站基坑的负 3 层)完成后轴力值最大达到 -7 585 kN,而从工序 8 到工序 10,地下连续墙埋深 15.5 m处,测点轴力从-1 395 kN 变为 7 585 kN, 因此,工序 8 到工序 10,对地下连续墙轴力的影响 较大。

从图 8 看出,在工序 8 之前,各工序之间地下连续墙的弯矩变化不大,但是,随着开挖深度的增加, 弯矩变化越来越大,工序 9(施作车站第 2 层中板)

Fig. 7 Axial forces of diaphragm wall E 6

之后,最大弯矩值出现在埋深 15.5 m 处,最大值为 -2 099 kN·m。从图 8 看出,工序 9 和工序 10 的 弯矩曲线变化最大,说明工序 8 到工序 10,对地下 连续墙的弯矩影响较大,弯矩计算结果与轴力计算 结果规律相类似。因为施工现场情况复杂,一些混 凝土应变计遭到了破坏,所以轴力和弯矩曲线变短。

3.2 地下连续墙 W7的内力测试结果分析

2014 年 1 月 20 日,地下连续墙 W7 开始采集应 变数据,从图 9 和图 10 可以看出:

1)从顶板覆土开始开挖(2月20日),地下连续 墙的应变值发生明显变化,地下连续墙W7测点最 大拉应变为896με,最大压应变为-436με;2)随着 基坑的开挖深度增加,大多数测点的应变值呈增长 趋势,工序8和工序9施工时,混凝土应变计的测试 数据变化幅度最大;3)每个工序在埋置混凝土测试 元件附近施工时,测点应变值变化较大,各条曲线表 现为波动明显,在远离埋置混凝土测试元件施工时, 测点应变值变化很小,各条曲线表现为平滑;4) c41、c51、c52和 c61测点应变值变化较大,受开挖的 扰动的影响较大;5) c71和 c72测点埋深最深,在基 坑开挖面以下,所以测点应变值受基坑开挖的影响 较小。施工完成后,混凝土应变计的测试数据变化 很小,最后趋于稳定。E6和 W7两幅地下连续墙的 测试数据变化规律整体相似。

根据混凝土应变计测得应变数值,计算地下连续墙 W7 的轴力和弯矩,如图 11 和图 12 所示。从图 11 看出,在工序 7 之前,地下连续墙的轴力变化较小,工序 9 后轴力最大,达到 8 439 kN。从工序 8 到工序 10,地下连续墙埋深 15.5 m 处,测点轴力从 -230 kN变为 8 439 kN,说明工序 8 到工序 10 对地 下连续墙轴力的影响较大。西侧连续墙 W7 总体变 化规律与东侧连续墙 E6 相似。

从图 12 看出,在工序 7 之前,各工序之间地下 连续墙的弯矩变化不大,但是,随着开挖深度的增加,弯矩变化越来越大,工序 8 之后,最大弯矩值出 现在工序 8,最大值为-2 318 kN•m。从工序 8 完 成到工序 10,地下连续墙 W7 埋深 15.5 m 处,弯矩

值从-359 kN·m变为-2 209 kN·m。由于地下 连续墙 W7 是 7&9 号线车站基坑和换乘大厅基坑 的共用连续墙,受换乘大厅的基坑开挖的影响较大。 从图 12 看出,工序 8 到工序 10 的弯矩曲线变化较 大,说明工序 8 到工序 10 对地下连续墙的扰动较 大。地下连续墙 W7 弯矩计算结果与轴力计算结果 的规律相类似。

Fig. 12 Bending moments of diaphragm wall W7

4 地下连续墙 E6 和 W7 的安全性评价

为了分析基坑开挖对地下连续墙安全性的影响,根据《混凝土结构设计规范》^[14]和截面配筋,计 算得到地下连续墙 E6、W7的抗弯承载力,并结合实 测内力计算数据,计算得到测试断面连续墙的安全 系数。如图 13 所示,地下连续墙的最小安全系数出 现在连续墙 E6,最小安全系数为 2.6,地下连续墙 E6 主要受到邻近香蜜湖立交桥的高路堤的挤压影 响,受到轴力和弯矩要比另一侧地下连续墙 W7 的 轴力和弯矩大。满足规范《建筑基坑支护技术规 程》^[15]的最小安全系数 2.2 的要求,说明地下连续 墙 E6 和 W7 处于安全状态,地下连续墙是稳定安 全的。

5 结 论

以深圳地铁车公庙交通枢纽 7 & 9 号线车站深 基坑工程为背景,选取典型的监测断面,埋置混凝土 应变计,进行深基坑的地下连续墙内力测试,得到以 下结论:

1)随着基坑开挖深度的增加,地下连续墙的内 力变化越发明显,表现为7 & 9 号线车站基坑负3 层土体开挖的轴力和弯矩值大于负2 层土体开挖的 轴力和弯矩值,负2 层土体开挖的轴力和弯矩值明 显大于负1 层土体开挖的轴力和弯矩值。工序8 到 工序10 对地下连续墙的内力变化影响较大,应重点 关注和监测。

2)由于受到紧邻基坑开挖和周边建筑物的影响,7 & 9 号线车站深基坑两侧的地下连续墙 E6 和W7 的轴力和弯矩变化曲线并非完全一致。

3)根据实测应变数据,计算得到连续墙的安全 系数,地下连续墙 W7 的最小安全系数为2.95,地下 连续墙 E6 的最小安全系数为2.6,说明地下连续墙 处于安全状态,地下连续墙 E6 和 W7 是稳定安全 的,但是地下连续墙 E6 最小安全系数较小,主要受 到邻近香蜜湖立交桥的高路堤的挤压影响,所以,连 续墙设计时应考虑周边环境的影响。

参考文献:

[1] EMILIOS M C, MELLO C P, GEORGIOS K K. Effects from diaphragm wall installation to surrounding soil and adjacent buildings [J]. Computers and Geotechnics, 2013, 53: 106-121.

- [2] GOH-ANTHONY T C, XUAN F, ZHANG W G. Reliability assessment of diaphragm wall deflections in soft clays [J]. Foundation Engineering in the Face of Uncertainty, 2013, 487-496.
- [3] WYJADLOWSKI M, PULA W, BAUER J. Reliability of diaphragm wall in serviceability limit states [J]. Archives of Civil and Mechanical Engineering, 2015, 288:1-9.
- [4]石钰锋,阳军生,白伟,等.紧邻铁路偏压基坑围护结构 变形与内力测试分析[J].岩石力学与工程学报,2011, 30(4):826-833.

SHI Y F, YANG J S, BAI W, et al. Analysis of field measurementing for deformation and internal force of unsymmetrical loaded foundation pit's enclosure structure close to railway [J]. Chinese Journal of Geotechnical Engineering, 2011, 30(4): 826-833. (in Chinese)

[5] 王树英,阳军生,唐鹏,等.八车道明挖湖底隧道结构受 力现场测试与安全性评价[J].土木工程学报,2014,47 (11):120-127.

WANG S Y, YANG J S, TANG P, et al. Field measurement of stresses and safety evaluation of eightlane framed lake tunnel with the cut-and-cover method [J]. China Civil Engineering Journal, 2014, 47(11): 120-127. (in Chinese)

- [6] YASUSHI A, OSAMU K, OSAMU M, et al. A numerical study on ground displacement and stress during and after the installation of deep circular diaphragm walls and soil excavation [J]. Computers and Geotechnics, 2008, 35: 791-807.
- [7] PAOLO F, FRANCESCO C. Seismic performancebased design of flexible earth-retaining diaphragm walls
 [J]. Engineering Structures, 2014, 78: 57-68.
- [8] CHU E H, SC D, HU S. Design optimization of underground metro station diaphragm walls using numerical modeling [C]//Geo-Congress 2014 Technical Papers, ASCE, 2014: 439-470.
- [9] NICOLETA M I, FARCAS V S, POP M. Design

optimization of diaphragm walls [J]. Procedia Technology, 2015, 19: 357-362.

- [10] LUIS S C, ANTONIO A, ALEJANDRO J. Bi-layer diaphragm walls: Experimental and numerical structural analysis [J]. Engineering Structures, 2013, 56: 154-164.
- [11] LUIS S C, ALEJANDRO J, ANTONIO A. Bi-layer diaphragm walls: Parametric study of construction processes [J]. Engineering Structures, 2014, 59: 608-618.
- [12] TAN Y, WEI B. Observed behaviors of a long and deep excavation constructed by cut-and-cover technique in Shanghai soft clay [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138: 69-88.
- [13] 中铁二院工程集团有限责任公司. 深圳地铁车公庙综 合交通枢纽工程施工图设计[R]. 成都:中铁二院工程 集团有限责任公司, 2012.
 China Railway Eryuan Survey and Design Group Co., Ltd. Design blueprint of Chegongmiao comprehensive transportation hub project of Shenzhen metro [R].
 Chengdu: China Railway Eryuan Survey and Design Group Co., Ltd., 2012. (in Chinese)
- [14] 中华人民共和国国家标准编写组. 混凝土结构设计规 范:GB 50010-2010 [S]. 北京:中国建筑工业出版 社, 2010.

The National Standards Compilation Group of People's Republic of China. Code for design of concrete structures: GB50010—2010 [S]. Beijing: China Architecture and Building Press, 2010. (in Chinese)

[15] 中华人民共和国住房和城乡建设部.建筑基坑支护技 术规程:JGJ 120-2012 [S].北京:中国建筑工业出版 社,2012.

Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical specification for retaining and protection of building foundation excavations: JGJ 120—2012 [S]. Beijing: China Architecture and Building Press, 2012. (in Chinese)

(编辑 王秀玲)