doi:10.11835/j.issn.1674-4764.2016.04.010

空心砌块的传导传递函数系数计算与验证

兰兴杰1,李丽2,李安邦2,张源3,徐新华2

(1. 中国舰船研究设计中心,武汉 430064;2. 华中科技大学 建筑环境与能源工程系,

武汉 430074;3. 江苏大学 能源与动力工程学院,江苏 镇江 212013)

摘 要:根据空心砌块的频域热特性辨识其 s 多项式传递函数,并进一步求取空心砌块的 CTF 系 数。根据空心砌块动态热特性实验结果对采用 CTF 系数计算空心砌块热特性的可靠性进行了验 证。结果表明,在边界条件趋于周期性稳定后,采用 CTF 系数和实验得到的空心砌块内外表面温 度曲线非常吻合。因此,CTF 系数能准确的计算空心砌块的动态热特性,是一种分析空心砌块动 态热特性的有效方法。

关键词:空心砌块;传递函数;CTF系数;热箱法;热分析 中图分类号:TU111.1 文献标志码:A 文章编号:1674-4764(2016)04-0059-05

Calculation and verification of the CTF coefficients of hollow block

Lan Xingjie¹, Li Li², Li Anbang², Zhang Yuan³, Xu Xinhua²

(1. China Ship Development and Design Center, Wuhan 430064, P. R. China; 2. Department of Building Environment and Energy Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China; 3. School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China)

Abstract: The *s*-polynomial transfer function of hollow blocks is obtained from the theoretical frequency characteristics, and the Conduction Transfer Function (CTF) coefficients of the hollow block are derived from the identified *s*-polynomial transfer function. The dynamic thermal experimental results of a hollow block are used for validating the results by using the CTF coefficients. The comparison shows that the surface temperature of the hollow block calculated by using the CTF coefficients agrees well with the experimental results after the boundary condition tends to be periodically stable. The results further show the identified *s*-polynomial transfer function as well as the resultant. CTF coefficients can represent accurately the dynamic thermal characteristics of the hollow block. CTF coefficients is an effective approach for analyzing the dynamic thermal characteristic of hollow blocks.

Keywords: hollow block; transfer function; CTF coefficients; hot chamber; thermal analysis

实际气象条件下围护结构传热随时间连续变化 是非稳定传热过程,求解围护结构的非稳定传热过 程就是求解墙体内外表面温度和热流随时间变化的 过程^[1]。围护结构外表面的得热或放热直接受室外

Author brief: Lan Xingjie(1977-), mian research interest: cabin atmosphere control, (E-mail)806126716@qq. com.

收稿日期:2015-09-10

基金项目:国家自然科学基金(51178201);新世纪优秀人才支持计划(NCET110189);高等学校博士学科点专项科研基金(20120142110078)

作者简介:兰兴杰(1977-),男,主要从事舱室大气环境控制研究,(E-mail)806126716@qq.com。

Received: 2015-09-10

Foundation item: National Natural Science Foundation of China(No. 51178201); Program for New Century Excellent Talents in University(No. NCET110189); Research Fund for the Doctoral Program of Higher Education (No. 20120142110078)

第 38 卷

空气综合温度的影响,而围护结构向室内的传热受 外表面向墙体内传热及围护结构内表面温度的影 响,由围护结构向室内散出或吸收的热量会影响室 内人员的舒适感。因此,有必要分析围护结构在非 稳定传热下的内外表面温度变化情况,进而为室内 负荷计算及热舒适研究等提供必要的信息。

传统建筑外墙多采用实心砖砌筑,保温性、气密 性差,热损失严重,而近些年发展的建筑节能砌块具 有良好的保温隔热性能。相比实心粘土砖,空心砌 块更加轻质节能,采用空心砌块作为建筑材料的发 展前景广阔。目前,对空心砌块的传热研究集中于 通过改变砌块结构、块型等降低砌块的热阻^[2-4],以 达到建筑节能的目的,而对空心砌块动态热特性方 面的研究较少。传导传递函数(CTF)系数法分析计 算围护结构非稳定传热问题简单且精度高^[5],可以 用来计算空心砌块墙体的动态热特性。

本文根据空心砌块的频域热特性辨识出 s 多项 式传递函数系数,并进一步求取了空心砌块的 CTF 系数。根据公开文献的空心砌块动态热特性实验结 果对 CTF 系数法计算空心砌块热特性的可靠性进 行了验证。

1 空心砌块的物理模型及参数

轻集料混凝土小型空心砌块是一种节能建筑砌 块,具有重量轻、保温性能好、装饰贴面粘贴强度 高、设计灵活等优点^[6],在夏热冬暖的长江中下游 地区可以选择多排孔轻集料混凝土砌块用于砌筑。 本文采用的空心砌块模型是 390 mm×190 mm× 190 mm 轻集料混凝土空心砌块^[7],砌块的结构如 图 1 所示,相关的物性参数如表 1 所示。此模型作 如下假设:1)所有的材料认为是均匀各向同性介 质;2)热传递过程中每种材料的热性能不发生改 变;3)砌块中的空气层采用当量导热系数;4)垂直 方向上的净热流量为 0,在计算域内简化为二维传 热模型。

表 1 结构各部分的热物性参数 Table 1 Material physical parameters of hollow block

材料名称	密度/ (kg・m ⁻³)	比热/ [J・(kg・ K) ⁻¹]	导热系数/ [W・(m・ K) ⁻¹]	热阻/ [m ² ・K・ W ⁻¹]
内表面空气层				0.105 3
轻骨料混凝土	1 600	600	0.62	
空气层(20 mm)	1.2	1 005	0.143	
空气层(40 mm)	1.2	1 005	0.267	
外表面空气层				0.053 8

2 数学模型

2.1 s 多项式传递函数

在室内外热扰作用下,空心砌块热力系统作为 线性时不变系统,传递矩阵(1)可以描述空心砌块内 外表面的热流与室内外空气温度之间的关系。式中 的 s 传递函数可以等价为 s 多项式传递函数的形式, 即式(2)。文献[8]利用频域有限元模型^[9]已经计算 得到空心砌块的理论频域热特性,从理论频域热特 性中可以辨识得到 s 多项式传递函数的系数^[10]。已 知空心砌块传热的 s 多项式传递函数,根据边界条 件就能得到空心砌块内外表面热流的表达式(3)。

$$\begin{bmatrix} Q_{\text{out}}(s) \\ Q_{\text{in}}(s) \end{bmatrix} = \begin{bmatrix} G_X(s) & -G_Y(s) \\ G_Y(s) & -G_Z(s) \end{bmatrix} \begin{bmatrix} T_{\text{out}}(s) \\ T_{\text{in}}(s) \end{bmatrix}$$
(1)

$$G(s) = \frac{\beta_0 + \beta_1 s + \beta_2 s^2 + \dots + \beta_r s^r}{1 + \alpha_1 s + \alpha_2 s^2 + \dots + \alpha_m s^m}$$
(2)

$$\begin{cases} Q_{\rm in}(s) = \widetilde{G}_{\rm Y}(s) T_{\rm out}(s) - \widetilde{G}_{\rm Z}(s) T_{\rm in}(s) \\ Q_{\rm out}(s) = \widetilde{G}_{\rm X}(s) T_{\rm out}(s) - \widetilde{G}_{\rm Y}(s) T_{\rm in}(s) \end{cases}$$
(3)

式中: $G_X(s)$ 、 $G_Z(s)$ 为空心砌块墙体外表面和内表 面吸热 s 传递函数, $G_X(s)$ 、 $G_Z(s)$ 为对应的吸热 s 多项式传递函数; $G_Y(s)$ 、 $G_Y(s)$ 分别为空心砌块墙 体由外到内和由内到外的横向传热 s 传递函数, $G_Y(s)$ 为对应的横向传热 s 多项式传递函数; $T_{out}(s)$ 为室外空气综合温度的拉氏变换, $T_{in}(s)$ 为 室内空气温度的拉氏变换; $Q_{out}(s)$ 为砌块墙体外表 面热流的拉氏变换; $Q_{in}(s)$ 为砌块墙体内表面热流 的拉氏变换; α_k 、 β_k 为多项式传递函数的系数; r 和 m 分别是分子和分母的阶次。

2.2 CTF 系数计算

实际情况下,无论是室内外的空气温度还是围 护结构表面热流,其变化非常不规则,很难用简单的 函数表示,所以无法应用式(3)直接求解^[11]。对于 复杂边界条件的线性问题,可以先将复杂边界条件 离散为简单函数(单元扰量),再求解围护结构对单 元扰量的响应,最后通过叠加积分等方法得出围护 结构对复杂扰量的响应。

空心砌块的边界条件如室外空气综合温度可以 认为是 24 h 为周期连续变化的扰量,这类扰量可以 离散为等时间间隔的单元扰量,通常离散此类连续 扰量采用的单元扰量是单位等腰三角波函数。单位 等腰三角波函数可以看作由斜波函数组成,因此,求 解空心砌块对单位等腰三角波函数的响应首先需要 求解空心砌块对单位等腰三角波函数的响应首先需要 求解空心砌块对单位斜波的响应,然后叠加求解空 心砌块对单位等腰三角波的响应。求解空心砌块 力系统对单位三角波扰量的响应,就是求得空心砌 块热力系统的外表面吸热反应系数 X(k)、内表面吸 热反应系数 Z(k)和传热反应系数 Y(k)。最后根据 求得的反应系数采用叠加积分就能计算出空心砌块 对整个扰量的响应。采用反应系数法计算围护结构 非稳定传热时,反应系数项数较多,计算时间长。 与反应系数法相比, z 传递函数所需的系数项 就少得多,运算效率能大大提高。z 传递系数和反 应系数存在一定的联系,由反应系数可以推导计算 传导传递函数(CTF)系数,推导过程参考文献[12]。 空心砌块热力系统的 z 传递函数就是空心砌块热力 系统在单位等腰三角波脉冲激励下响应的 z 变换, 由空心砌块的反应系数序列经 z 变换得到空心砌块 的 z 传递函数的表达式。同时,空心砌块的 z 传递 函数还可以用两个多项式之比的形式表达。根据空 心砌块 z 传递函数的两种等价表达式,可以得出空 心砌块的 CTF 系数 a_i 、 b_i 、 c_i 、 d_i 与反应系数 X(k)、 Y(k)、Z(k)之间的关系,有关 CTF 系数具体推导过 程见参考文献[13-14]。

根据 z 传递函数的定义,空心砌块墙体内外空 气温度都发生变化时,墙体内外表面的传热量分别 为式(4)、式(5),进一步可以计算出空心砌块墙体内 外表面温度。

$$Q_{in}(\tau_n) = \sum_{i=0}^r b_i T_{out}(\tau_n - i) - \sum_{i=0}^r c_i T_{in}(\tau_n - i) - \sum_{i=1}^m d_i Q_{in}(\tau_n - i)$$
(4)
$$Q_{out}(\tau_n) = \sum_{i=0}^r a_i T_{out}(\tau_n - i) - \sum_{i=0}^r b_i T_{in}(\tau_n - i) - \sum_{i=0}^m d_i Q_{out}(\tau_n - i)$$
(5)

式中: $T_{out}(\tau_n - i)$ 为 $\tau_n - i$ 时刻空心砌块外表面空 气温度, \mathbb{C} ; $T_{in}(\tau_n - i)$ 为 $\tau_n - i$ 时刻空心砌块内表 面空气温度, \mathbb{C} ; $\tau_n = 0, 1, 2 \cdots 23; Q_{in}(\tau_n - i)$ 为 $\tau_n - i$ i 时刻空心砌块内表面热流, $W/m^2; Q_{out}(\tau_n - i)$ 为 $\tau_n - i$ 时刻空心砌块外表面热流, $W/m^2; a_i, b_i, c_i, d_i$ 为空心砌块的 CTF 系数。

3 实验验证方法

文献[7]采用热箱法建立了空心砌块动态传热 的实验模型,测定了空心砌块墙体的动态热特性。 热箱法所建立的实验装置是由热室、冷室、试件和外 部环境4个部分组成。热室是用来模拟夏季室外气 候条件,冷室是用来模拟夏季室内自然条件。通过 对墙体两侧的热室、冷室和环境温度、风速等同时进 行调控,达到实验所需的室内环境。传热环境达到 稳定状态后,就可由均匀分布的热电偶和数据记录 仪记录下热室和冷室的空气温度与试件表面温度。 通过改变热室和冷室的空气温度,可以测试得到不 同实验条件下空心砌块墙体表面的温度,其中两组 实验的空心砌块表面空气温度设定如图 2(a)、(b)。 CTF系数法应与实验模型保持相同的边界条件设 置,即 CTF系数法采用图 2 中的两组实验的边界条 件分别计算空心砌块墙体表面温度。将 CTF系数 法计算的空心砌块表面温度与实验模型测得的空心 砌块表面温度进行比较,以验证理论计算得到的 CTF系数的正确性。

Fig. 2 Air Temperature of hollow block inner surface and outer surface under different experimental conditions

4 结果分析

经过推导计算,该空心砌块墙体的 CTF 系数计 算结果如表 2 所示,利用此 CTF 系数可以计算空心 砌块墙体表面温度。该空心砌块墙体的总传热系数

为 1.568 9 W/(m² • K),且 $\frac{\sum a_k}{\sum d_k} = \frac{\sum b_k}{\sum d_k} = \frac{\sum c_k}{\sum d_k}$ = 1.568 9,即空心砌块墙体的内外表面吸热 z 传递 函数和横向传热 z 传递函数都等于空心砌块墙体的 总传热系数。

表 2 空心砌块的 CTF 系数 Table 2 CTF coefficients of the hollow block

Κ	a_k	b_k	Ck	d_k
0	7.769 958	0.006 461	7.769 958	1.000 000
1	-11.610725	0.135 540	-11.610725	-0.997088
2	4.679 433	0.176 068	4.679 433	0.229 486
3	-0.493 46	0.028 128	-0.493 46	-0.011637
4	0.001 782	0.000 417	0.001 782	0.000 036
5	-0.000 376	-0.000 002	-0.000376	-0.000003
\sum	0.346 612	0.346 612	0.346 612	0.220 794

由于空心砌块整体非均质,空心砌块内外表面 实际上是非等温面,但是内外表面上的温度变化幅 度很小,可以把空心砌块内外表面上的平均温度看 作是砌块内外表面温度。在图2所示的非稳定边界 条件作用下,采用 CTF 系数法计算得到空心砌块的 内外表面温度,并与实验结果进行比较,如图3。初 始时刻,空心砌块内外表面作用的空气温度还未达 到周期性稳定,通过空心砌块的传热是非周期性稳 定状态,因此,CTF 计算值和实验测试值在前 10 h 有较大的差异。10 h 之后两者的差异减小,不同边 界条件影响下 CTF 系数法和实验得到的空心砌块 内外表面温度曲线都能很好的吻合。因为前 10 h 空心砌块的动态传热过程还未稳定,因此,取10h 之后的两者的数据结果进行分析。实验1中,空心 砌块外表面温度的 CTF 计算值和实验测试值最大 绝对误差为 1.66 ℃,平均相对误差为 2.78%,标准 偏差为 0.85 ℃;空心砌块内表面温度 CTF 计算值 和实验测试值最大绝对误差为1.46 ℃,平均相对误 差为 2.39%,标准偏差为 0.71 ℃。实验 2 中,空心 砌块外表面温度 CTF 计算值和实验测试值最大绝 对误差为 2.62 ℃,平均相对误差为 7.17%,标准偏 差为 1.28 ℃;空心砌块内表面温度 CTF 计算值和 实验测试值最大绝对误差为1.45 ℃,平均相对误差 为2.70%,标准偏差为0.78℃。空心砌块内外表 面温度 CTF 计算值和实验测试值的平均相对误差 均小于8%,标准偏差均小于1.5℃,误差都在可接 受精度范围内。CTF 计算出来的结果和实验结果 的比较表明,本文采用 CTF 系数计算空心砌块的动 态热特性可以保证较高的精度,用于分析空心砌块 的非稳定传热问题更加简单。

Fig. 3 Temperature of hollow block inner surface and outer surface obtained by CTF coefficients method or experiment method under different experimental conditions

5 结 论

采用参数辨识的方法根据空心砌块的频域热特

性获取其 s-多项式传递函数,并进一步求取了空心 砌块的 CTF 系数。根据公开文献的空心砌块的动 态热特性实验结果对 CTF 系数法计算空心砌块热 特性的可靠性进行了验证。结果表明,当空心砌块 的动态传热趋于周期性稳定时,不同边界条件影响 下 CTF 系数法和实验得到的空心砌块内外表面温 度曲线都能很好的吻合。空心砌块内外表面温度的 计算值和实验测试结果的平均相对误差均小于 8%,标准偏差均小于 1.5 ℃。本文采用的 CTF 系 数法能可靠且准确地计算空心砌块的动态热特性, 是一种分析空心砌块结构动态传热的有效方法。

参考文献:

[1]何嘉鹏,徐明立.墙体传热反应系数的计算[J].东南大 学学报,1998,28(1):136-139.

HE J P, XU M L. Calculation of heat transfer coefficients of wall [J]. Journal of Southeast University, 1998, 28(1): 136-139. (in Chinese)

- ZHANG Z P,ZHU S W,CHEN G P. Study on thermal performance for straw fiber concrete hollow block [J].
 Advanced Materials Research, 2014, 953/954: 1596-1599.
- [3] MORALES M P, JUÁREZ M C, MUÑOZ P, et al. Study of the geometry of a voided clay brick using nonrectangular perforations to optimize its thermal properties [J]. Energy & Buildings, 2011, 43(9): 2494-2498.
- [4] MORALES M P, JUÁREZ M C, LÓPEZ-OCHOA L M, et al. Study of the geometry of a voided clay brick using rectangular perforations to optimize its thermal properties [J]. Applied Thermal Engineering, 2011, 31 (11/12):2063-206.
- [5] 陈友明,王盛卫.建筑围护结构非稳定传热分析新方法 [M].北京:科学出版社,2004. CHEN Y M, WANG S W. A new method for unsteady heat transfer analysis of building envelope [M].

Beijing:Science Press,2004. (in Chinese)

[6]周运灿.轻集料混凝土小型空心砌块的现状、存在问题 和发展趋势[J].砖瓦,2004(2):38-40.

ZHOU Y C. The present situation, existing problems and developing trend of light aggregate concrete small hollow block [J]. Brick-Tile, 2004 (2): 38-40. (in Chinese)

[7] ZHANG Y, DU K, HE J P. Impact factors analysis on

the thermal performance of hollow block wall [J]. Energy and Buildings,2014,75:330-341.

[8]李丽,李安邦,徐新华.基于频域有限元法的空心砌块 频域热特性分析[J].制冷与空调,2016,30(2): 120-124.

LI L,LI A B,XU X H. Study of the frequency thermal characteristics of hollow block based on frequencydomain finite element method [J]. Refrigeration and Air Conditioning, 2016, 30(2):120-124. (in Chinese)

- [9] ISHIKAWA Y, MIZOBUCHI T, TANABE T. Development of FEM thermal analysis for concrete structures with pipe cooling system [C]//Ninth International Conference on Creep, Shrinkage, and Durability Mechanics, Cambridge, American Society of Civil Engineers, 2013.
- [10] 李伟光,杨海燕,李丽,等.复杂船舶围壁的传热多项式 传递函数辨识[J].中国舰船研究,2015,10(3): 108-112.

LI W G, YANG H Y, LI L, et al. Identification of the spolynomial transfer function of heat transfer for complex ship casing walls [J]. Chinese Journal of Ship Research, 2015, 10(3):108-112. (in Chinese)

 [11] 彦启森,赵庆珠.建筑热过程[M].北京:中国建筑工业 出版社,1986.
YAN Q S, ZHAO Q Z. Building thermal process [M].

Beijing:China Architecture & Building Press,1986. (in Chinese)

- [12] PEAVY B A. A note on response factors and conduction transfer function [J]. ASHRAE Transactions, 1978, 84(1):688-690.
- [13] XU X H, WANG S W, CHEN Y M. An improvement to frequency-domain regression method for calculating conduction transfer functions of building walls [J]. Applied Thermal Engineering, 2008, 28(7):661-667.
- [14] WANG S W, CHEN Y M. A simple procedure for calculating thermal response factors and conduction transfer functions of multilayer walls [J]. Applied Thermal Engineering, 2002, 22(3):333-338.

(编辑 王秀玲)