doi:10.11835/j.issn.1674-4764.2017.03.020

流固耦合的多元结构深厚覆盖层 透水地基的力学特性

王正成^{1,2},毛海涛^{1,3},龙顺江¹,姜海波²,张如意² (1.重庆三峡学院 土木工程学院,重庆 万州 404100;2. 石河子大学 水利建筑工程学院, 新疆 石河子 832000;3. 武汉大学 水利水电学院,武汉 430072)

摘 要:深厚覆盖层多元结构坝基在渗流过程中各土层力学差异明显,分析时关注的具体问题也不尽相同,需要深入研究。基于比奥固结理论,考虑土体的非线性流变以及土体固结变形过程中孔隙度、渗透系数、弹性模量及泊松比的变化;借助 ADINA 流固耦合模块来模拟西藏达嘎水电站坝基渗流场与应力场耦合过程,分析各层力学特性及相互作用。研究表明,透水性较强的表层土体是渗流主要通道,也是渗流进出区和沉降变形体现区,应在上游采取措施提高其压缩模量,下游区域增设反滤层和排水设施;坝基中的粉细砂层是坝基沉降的主要原因,对坝基沉降起主导作用,同时应注意其液化特性对坝基的不利影响;坝基中的承压含水土层对下游上部结构产生向上顶托力,若位置较深,则破坏性较小;坝基深部土层对整个坝基的渗流破坏影响较小,但对沉降和渗流量的影响不可忽视;表层砂卵砾石层和粉细砂层的渗透系数相差较小时,土层间不会发生接触冲刷。此外,还发现坝基孔隙水压力在快速衰减阶段被消散,期间土体固结较快。垂直防渗墙能有效降低渗透坡降和渗流量,将坝基沉降变形控制在防渗墙上游区域,但上游坝基变形对防渗墙产生较大的水平推力,应加大防渗墙尺寸或者采用辅助渗控措施。

关键词:深厚覆盖层;粉细砂层;力学特性;流固耦合;多元结构;沉降 中图分类号:TU443 文献标志码:A 文章编号:1674-4764(2017)03-0151-09

Mechanical properties of multiple-structure thick overburden pervious foundation based on fluid-solid coupling

Wang Zhengcheng^{1,2}, Mao Haitao^{1,3}, Long Shunjiang¹, Jiang Haibo², Zhang Ruyi²

(1. College of Civil Engineering, Chongqing Three Gorges University, Chongqing 404100, P. R. China;

2. College of Water & Architectural Engineering, Shihezi University, Xinjiang 832000, P. R. China;

3. Institute of Water Conservancy and Hydroelectric Power, Wuhan University, Wuhan 430072, P. R. China)

Abstract: The mechanical properties of each soil layer in multiple-structure thick overburden pervious foundation diverge significantly and specific questions that draw attention are quite different from each

基金项目:国家自然科学基金(51309262);重庆市科委基础与前沿研究计划(cstc2015jcyjA1204、cstc2015jcyjA00022) 作者简介:王正成(1991-),男,主要从事土石坝渗流机理研究,(E-mail)wangzhengcheng194@163.com。

Received: 2016-12-04

Author brief: Wang Zhengcheng (1991-), main research interests: earth-rock dam percolation mechanism, (E-mail) wangzhengcheng194 @163.com.

Mao Haitao(corresponding author), associate professor, PhD, (E-mail)maohaitao1234@163.com..

收稿日期:2016-12-04

毛海涛(通信作者),男,副教授,博士,(E-mail)maohaitao1234@163.com。

Foundation item: National Natural Science Foundation of China (No. 51309262), Chongqing Science & Techniogy Commission Basic and Frontier Research Projects (No. cstc2015jcyjA1204,No. cstc2015jcyjA00022)

other. Based on the principle of Biot consolidation theory, the study takes soil non-liner rheological and the change of porosity, permeability coefficient, elastic modulus and poisson ratio at the consolidation deformation process of soil into account. The coupling process of seepage and stress fields of Daga hydropower station dam foundation is simulated by fluid-structure interaction module of ADINA to analyze mechanical properties and interaction of each layer. The research shows that the looser permeable soil on surface is the main seepage channel, also the inlet and outlet area of seepage and settlement deformation reflects area. Measures should be taken to improve the compression modulus in upstream and install the anti-filter layer and drainage facilities in downstream area. Fine sand layer in dam foundation is the main reason for dam foundation settlement, which plays a very leading role in the dam foundation settlement. Meanwhile, attention should be payed to the liquefaction properties of adverse impact on the dam foundation. Artesian aquifer in dam foundation produces up-holding force on the downstream side of the upper structure, and the destruction is small if the location is deep. Deep soil layer have a less effect on the seepage failure of dam foundation, but the effect can not be dismissed on settlement and seepage flow. Since in the permeability coefficient of sand gravel stratum and fine sand layer exists a modest distinction, the soil layer does not generate the contact erosion. In addition, the pore water pressure is dissipated at a rapidly-declining phase, and the dam foundation shows a stabletendency at rapid consolidation stage. Vertical cutoff wall can effectively decrease seepage gradient and seepage discharge, and the settlement deformation of dam foundation is controlled in upstream region of cuttoff wall. But the deformation of upstream dam foundation produces a large horizontal thrust to the cutoff wall, so the size of cutoff wall should be increased or the auxiliary seepage control measures shall be adopted correspondly.

Keywords: deep overburden layer; fine sand layer; mechanical properties; fluid-solid coupling; multiple structure; settlement

深厚覆盖层坝基往往是多元结构,存在明显的 分层现象,各土层颗粒组成、渗透性等物理特性差异 较大。其中有些土层压缩性大、易液化、承载能力 低;部分土层渗透性强、易发生渗透破坏。已开发的 许多水利工程坝基都属于多元结构坝基,其中存在 中等或弱透水粉细砂层与强透水砂卵砾石层^[1],增 大了上覆水工建筑物的风险程度。

针对多元结构深厚覆盖层透水坝基的力学特性,吴梦喜等^[2]、Wu等^[3]研究表明,渗透系数相对较小土层的局部不完整性对渗流量及渗透坡降影响较大;Ozcoban等^[4]得出建在含软粘土地基上Abbey坝的沉降主要发生在加载阶段;Mesri等^[5]对软土层的固结参数和沉降计算方法进行了修正;Zhang等^[6]得出坝体与塑性区的连接区域的位移能作为评价大坝安全的一个重要标准。

本文以骆祖江等^[7]提出的比奥固结理论为基础,结合土体非线性流变理论,将土体本构关系推广 到粘弹塑性,同时考虑土体水力学参数及土力学参 数随渗流场和应力场的动态变化关系,借助 ADINA 流固耦合软件对西藏达嘎水电站多元结构深厚覆盖 层进行渗流场和应力场耦合计算,研究含有粉细砂 层、漂卵砾石等多元结构坝基在大坝蓄水稳定后的 力学特性变化规律及不利影响,提出相应的工程 措施。

1 理论基础与方法

1.1 比奥固结有限元方程

利用伽辽金加权余量法离散方程,考虑土体的 非线性特征,取Δt时间内的位移增量来代替整体位 移,将饱和土体比奥固结方程离散成增量形式^[8],如 式(1)。

$$\begin{bmatrix} \bar{k} & k' \\ k^{T} & \Delta T + B \end{bmatrix} \begin{bmatrix} \Delta \delta \\ \Delta u \end{bmatrix} = \begin{bmatrix} R - R_t \\ \Delta t \Delta Q \end{bmatrix}$$
(1)

式中: k 为固体刚度矩阵; k[']为应力-渗流耦合项矩 阵; k^T 为渗透矩阵; B 为自由面的积分矩阵; Δδ 为结 点位移增量; Δu 为结点孔隙压力增量; ΔQ 为流量增 量矩阵; R 为等效结点荷载, R_t 为t 时刻已经发生的 位移所平衡的那部分荷载。

因为渗流取决于孔隙水压力全量的分布,而不 是取决于时间内孔隙压力的增量,所以孔隙水压力 要用全量的形式表示,记时刻 t_n和 t_{n+1}时单元结点 i 的孔压全量分别为 $u_{i(n)}$ 和 $u_{i(n+1)}$,且 $\Delta u_i = u_{i(n)} - u_{i(n+1)}$,则式(1)可变换为

$$\begin{bmatrix} \bar{k} \\ k^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} \Delta \, \delta \\ u_{i\,(n+1)} \end{bmatrix} = \begin{bmatrix} R - R_{t} \\ \Delta \, t\Delta \, Q - (\Delta tk + B) u_{i\,(n)} \end{bmatrix}$$
(2)

上式即为比奥固结有限元方程。

1.2 土体参数的非线性

采用邓肯-张非线性模型,将土体的本构关系非 线性化,则本构关系 { $\Delta\sigma$ } = [D] { $\Delta\varepsilon$ } 中矩阵[D]中 的弹性常数 E_{v} 不再视为常量,而是随着应力状态 而改变^[9],其切线弹性模量和切线泊松比的表达 式为

$$E_{t} = \left[1 - R_{f} \frac{(1 - \sin \varphi)(\sigma_{1} - \sigma_{3})}{2c\cos \varphi + 2\sigma_{3}\sin \varphi}\right]^{2} k p_{a} (\frac{\sigma_{3}}{p_{a}})^{n}$$
(3)

$$v_{t} = \frac{G - Flg(\frac{\sigma_{3}}{p_{a}})}{\left[1 - \frac{D(\sigma_{1} - \sigma_{3})}{\alpha p_{a}(\frac{\sigma_{3}}{p_{a}})^{n} \left[1 - \frac{R_{f}(1 - \sin \varphi)(\sigma_{1} - \sigma_{3})}{2c\cos \varphi + 2\sigma_{3}\sin \varphi}\right]}\right]}$$
(4)

式中: $R_{\rm f}$ 为破坏比,无量纲;c为粘滞力, $kPa;\varphi$ 为内 摩擦角; σ_1 为第1主应力, $kPa;\sigma_3$ 为第3主应力, kPa;G为土体常规三轴压缩实验结果所绘制的曲线 截距;n为弹性模量与固结压力曲线的斜率;F=0.04;D=3为土体实验参数; P_a 为大气压强,kPa。

1.3 孔隙度与渗透系数的非线性

在比奥固结的假设条件下,根据孔隙度的相关 定义和渗流力学 Kozeny-Carman 方程,推算得到孔 隙度 n 和渗透系数 k 的动态表达式为

$$n = \frac{n_0 + \epsilon_{\rm v}}{1 + \epsilon_{\rm v}} \tag{5}$$

$$k = \frac{k_0}{1 + \varepsilon_{\rm v}} \left[1 + \frac{\varepsilon_{\rm v}}{n_0} \right]^3 \tag{6}$$

式中: n_0 为初始孔隙度,无量纲; k_0 为初始渗透系数,m/s; ϵ_v 为体应变,无量纲。

以土体初始孔隙率 n₀ 作为耦合桥梁,建立起整 体渗透矩阵[k]与应力场影响后的整体渗透矩阵[k] 间的联系

$$k = k' \left\{ \frac{(n_0 + \epsilon_v) (1 - n_0)}{n_0 (1 - n_0 - \epsilon_v)} \right\}^3$$
(7)

联立式(7)、式(1),并考虑加重残差,简化变形 后得到应力-渗流耦合的数值方程为

$$\int_{\mathbf{v}} (B^{\mathrm{T}} K B) \,\mathrm{d} V H + \int_{\mathbf{v}} (m_{\mathrm{w}} \gamma_{\mathrm{w}} N^{\mathrm{T}} N) \,\mathrm{d} V H_{\mathrm{t}} =$$

$$q \int_{A} (N^{\mathrm{T}})$$
 (8)

式中:**B**为动水坡度矩阵;**K**为单元渗透系数矩阵; H为节点水头向量;N为形函数向量;q为单元边的 单位重量;λ为非稳定的阻流项;m_w为阻流系数;γ_w 为水的容重;H_t为随时间变化的水头。

式(8)可简化为

$$KH + MH_{t} = Q \tag{9}$$

基于式(8)和式(9),通过 ADINA 实现坝基土体中 渗流场与应力场耦合计算。

2 模型建立

2.1 工程概况

达嘎水电站位于藏南日喀则,系雅鲁藏布江石 岸一级支流夏布曲干流的第3个梯级电站,夏布曲 干流多年平均径流量为16.77 m³ · s⁻¹。混凝土重 力坝坝顶高程为4190 m,最大坝高21 m,坝顶宽5 m,坝底宽30 m,正常蓄水位为4187 m,坝轴线长 170 m。坝基为典型的多元结构深厚覆盖层透水地 基,厚度为40.89 m,向两岸逐渐变薄。电站所在地 区的地震基本烈度为7°^[10]。

根据钻孔资料将河床覆盖层从上至下分为五 层: I 岩组为含漂砂卵砾石(alQ₄),厚 4.58~21.97 m,埋深 0~21.97 m; II 岩组为粉细砂层(alQ₃³),厚 $3.23\sim6.4$ m,埋深 17.95~20.37 m,为晚更新世 (Q₃)沉积物; III 岩组为含漂砂砾卵石层(alQ₃),厚 $2.64\sim7.78$ m,埋深 22.11~27.35 m; IV 岩组为粉 细砂层(alQ₃³ 含),厚 1.43~3.98 m,埋深 29.1~30 m,为晚更新世(Q₃)沉积物; V 岩组为含漂砂砾卵石 层(alQ₃),厚度 7.67~7.81 m,埋深 31.43~33.08 m。各岩组具体分布如图 1 所示。

2.2 计算参数

在 ADINA 流固耦合计算中,坝体、多元结构深

厚覆盖层坝基、混凝土防渗墙的计算参数及渗透破 坏类型,如表1所示。

	Table 1 The calculation parameters and seepage failure type					
分区	杨氏模量/ (N・m ⁻²)	泊松比	密度/ (kg・m ⁻³)	渗透系 数/(m・s ⁻¹)	允许坡降	破坏类型
I 岩组	1.8×10^{8}	0.17	2 250	4×10^{-5}	0.15	管涌
Ⅱ、Ⅳ岩组	3×10^{7}	0.18	1 820	2×10^{-6}	0.4	流土
Ⅲ、V岩组	1.8×10^{8}	0.17	2 200	1×10^{-5}	0.15	管涌
坝体	2.85 $\times 10^{10}$	0.2	2 400	7×10^{-9}		
防渗墙	2.85 $\times 10^{10}$	0.2	2 400	7×10^{-9}		

表1 计算参数及渗透破坏类型

2.3 建模剖面

图 1 中 ZK3 所在 剖 面 是 坝 基 中 厚 度 最 大 (40.89 m),分层明显,具有 2 层粉细砂层,为渗流控 制最不利剖面。模型计算以 ZK3 纵剖面为研究对 象具有代表性。对应的 I、II、III、IV、V 岩组的厚度 分别为 18.3、4.4、6.4、3.98、7.81 m。坝基采用封 闭式混凝土防渗墙,厚度为 1 m。达嘎水电站纵剖 面图如图 2 所示。

耦合计算时,上游水位为4187m,下游水位为4187m,下游水位为4169m,上下游水位恒定,不考虑坝体填筑、蓄水过程及上下游水位的波动。

3 计算结果分析

3.1 渗流量及渗透坡降

渗流量控制是至关重要的,也是检验控渗措施 的关键指标。坝基渗流量分布如图 3 所示。

由图 3 可得,靠近防渗墙和坝底区域的渗流量 等值线的密集程度明显高于其他部位。从坝踵至上 游区域渗流量逐渐降低,由坝趾至下游区域渗流量 也呈递减趋势。可见,坝踵附近区域是主要的入渗

注:图中渗流量的单位为(10⁻⁷ m³ · s⁻¹)。

图 3 大坝渗流量分布图

口,坝趾附近区域是主要的出渗口。

土石坝单宽渗流量 q 随时间 t 变化曲线,如图 4 所示。

图 4 表明:单宽渗流量 q 由开始时的 10.21×10⁻⁶ m³ • s⁻¹逐渐降低至 5.21×10⁻⁶ m³ • s⁻¹,最终

趋于稳定;变化曲线呈指数函数下降,拟合函数为 $q = 5.028e^{-0.082t} + 5.123$,此过程需要经历 42 个月 左右。

稳定状态时单宽渗流量为 5. $21 \times 10^{-6} \text{ m}^3 \cdot \text{s}^{-1}$, 渗流量的控制方程^[11]为

 $Q < (0.005 \sim 0.01)Q_{\mp}$ (10) 式中:Q为大坝渗流量, Q_{\mp} 为河道多年平均来水量; Q_{\mp} 前的系数 0.005 适用于缺水地区,0.01 适用于 一般地区。

夏布曲干流平均流量为 $Q_{\mp} = 16.77 \text{ m}^3 \cdot \text{s}^{-1}$, 达嘎水电站处西南地区,属于一般地区, Q_{\mp} 前系数 取 0.01 即可,0.01 $Q_{\mp} = 1.677 \times 10^{-1} \text{ m}^3 \cdot \text{s}^{-1}$;采 用半封闭式防渗墙时渗流量Q等于单宽渗流量q与 坝轴线长的乘积, $Q = qL = 8.857 \times 10^{-4} \text{ m}^3 \cdot \text{s}^{-1}$ 小 于允许渗流量 1.677×10⁻¹ m³ · s⁻¹,满足渗流量控 制要求。

渗流出口位于坝趾附近区域,如图 3 中的 P 点 所示。该出口是渗流控制的关键部位,也是最容易 发生渗透破坏的部位,坝基渗透出逸坡降 J 是衡量 渗透破坏的重要指标。其随时间 t 的变化曲线如图 5 所示。

Fig. 5 The change curve of exit gradient with time

图 5 中渗透出逸坡降变化趋势与图 4 类似,由 0.14 逐渐降低至 0.019,在 42 个月左右趋于稳定。 其随时间 t 变化函数为: $J = 0.126e^{-0.081t} + 0.014$ 。 达到渗流稳定时,出逸坡降 J = 0.019,小于 I 岩组 的允许渗透坡降[J]=0.15。

3.2 坝基沉降变形

3.2.1 坝基总体变形 坝基随着流固耦合作用而 逐渐沉降变形,其变形规律和沉降大小关系到大坝 的安危,需要高度重视。计算得到多元结构坝基沉 降随时间变化如图 6 所示。

图 6 多元结构坝基变形图

图 6 显示,随着时间推移坝基沉降逐渐增大,以 垂直防渗墙为界,上游坝基沉降变形最为明显,坝基 表面距离防渗墙 30 m 左右 A 点处出现最大沉降。 从各层的变形来看,粉细砂层 II、IV 岩组变形量最 大。防渗墙下游坝基变形不明显,耦合初期下游建 基面微微隆起,耦合趋于稳定后,下游建基面也出现 幅度较小的沉降。各岩组 42 个月后沉降等值线如 图 7 所示。

图 7 达嘎水电站沉降等值线图 Fig. 7 The settlement-contour map of daga hydropower station

由图 7 可知,上游各层坝基的沉降变化范围为 -43.6 cm~-3.5 cm,下游坝基的沉降量为-5.6 cm~-0 cm。Ⅱ、Ⅳ岩组内的沉降等值线的密集程 度明显远远高于Ⅰ、Ⅲ、Ⅴ岩组。沉降与隆起的分界 线(沉降量为0的等值线)位于下游,仅有很小一部 分区域发生隆起。

3.2.2 各岩组沉降 计算压缩土层的沉降量时,可 采用改进分层总和法^[12],其表达式为

$$S(t,k) = \sum_{j=1}^{k} S(t-t_j,j) - \sum_{j=1}^{k} S(t_k-t_j,j)$$
(11)

式中:*t* 为时刻;*k* 为可压缩土层的编号; *j* 为各土层 的层号;*S*(*t*,*k*)为第 *k* 层可压缩层在 *t* 时刻的沉 降量。

将改进分层总和法与 ADINA 计算各岩组的沉 降量结果对比如下表 2。

表 2 坝基沉降量及沉降比例

Table 2The settlement and settlementratio of dam foundation

岩组	AD	INA	改进分成总和法		
	沉降量/cm	所占比例/%	沉降量/cm	所占比例/%	
I岩组	7.6	17.5	8.9	18.5	
Ⅱ岩组	17.9	41	18.8	39	
Ⅲ岩组	2.3	5.3	2.1	4.6	
Ⅳ岩组	14.3	32.8	15.9	33	
V岩组	1.5	3.4	2.5	5.2	
坝基	43.6	100	48.2	100	

由表 2 可知,采用数值模拟法和改进分层总和 法计算得到的各岩组的沉降值较为相似,验证了数 值模拟计算的合理性。

模拟结果中I~V岩组沉降量分别为:7.6、17.9、 2.3、14.3、1.5 cm,占总沉降的比例分别为:17.5%、 41%、5.3%、32.8%、3.4%;Ⅱ、Ⅳ岩组的沉降值及比例 明显高于I、Ⅲ、Ⅴ岩组。可见,覆盖层坝基的沉降主要 与Ⅱ、Ⅳ岩组关系密切,两岩组起主导作用。

坝体的最大沉降量为 43.6 cm,坝高 21 m,最大 沉降量与坝高的比值为 0.205%,坝体的纵向沉降 满足规范要求。

3.3 坝基固结度

坝基的固结度 ν 随时间 t 的变化曲线如图 8 所示。

从图 8 中曲线可知,坝基固结大致分为 3 个阶段:初始固结阶段(OA 段)、快速固结阶段(AB 段) 和缓慢固结阶段(BC 段)。各段需要时间长度分别 为:3、12、27 个月。其中初始固结阶段和快速固结 阶段的 15 个月(450 d)内,坝基沉降量占总沉降量 的 91.5%,时间为总沉降时间的 35.7%;缓慢固结 阶段沉降量占总沉降的 8.5%,但需要总时间的

64.3%(27个月)才能完成。

3.4 坝基孔隙水压力消散规律

作坝基孔隙水压力 P。随时间的衰减曲线,如图 9 所示。

由图 9 可得,孔隙水压力 P。随时间逐渐消散, 总体可分为 2 个阶段:快速衰减阶段(0~10 月)和 缓慢衰减阶段(10~42 月)。快速衰减阶段所需的 时间占总时间的 23.81%,消散了 91.6%的孔隙水 压力。缓慢衰减阶段所需的时间占总时间的

4 各岩组主要特性及相互作用

76.19%,消散了8.39%的孔隙水压力值。

4.1 【岩组特性分析

I 岩组位于坝基的最上部分,厚度为18.3 m; 渗透系数为4×10⁻⁵ m/s,属于强透水层。该层是沉 降显现区,也是渗流进出口区域。

4.1.1 渗流方面 I 岩组厚度占坝基总厚度的
44.75%,其下Ⅱ岩组的渗透系数为2×10⁻⁶ m/s,相
对Ⅱ岩组为弱透水层。作坝基渗流量截面图,如图
10 所示。

由图 10 可得,整个坝基的渗流量为 $q=5.21 \times 10^{-6} \text{ m}^3 \cdot \text{s}^{-1}$,而直接水平通过 I 岩组的渗流量为 $q_1 = 4.19 \times 10^{-6} \text{ m}^3 \cdot \text{s}^{-1}$,占坝基总渗流量的 80.42%,可见 I 岩组为坝基渗流的主要通道。

该岩组不均匀系数 C_u为 56.1~100.1,平均粒 径为 17.23~29.63 mm,渗透破坏类型为管涌。虽 然在 3.1小节分析中,I岩组在渗透坡降方面满足 要求,但在实际运行中应该在下游坝趾附近采取必 要工程措施,以防万一。

4.1.2 沉降方面 I岩组厚度占坝基的44.75%, 沉降量为7.6 cm,占坝基总沉降的17.5%;该层是 坝基累计沉降的体现区域,在表面会出现沉降坑,最 大竖向沉降为图5中的点A。作点A的沉降量随时 间的变化曲线,如图11 所示。

图 11 点 A 的沉降量随时间的变化曲线

4.2 Ⅱ和Ⅳ岩组沉降及液化分析

由图 6 显示出 Ⅱ、Ⅳ 岩组为主要的沉降层,分别 占总沉降的为 41%、32.8%。作 Ⅱ 岩组、Ⅳ 岩组的 沉降量随时间的变化曲线,如图 12 所示。

Fig. 12 The settlement change curves of I and IV petrofabrics

由图 12 可得,随着双场耦合作用,Ⅱ岩组的沉降量由 0 增大至 17.9 cm, N岩组的沉降量由 0 增大 至 14.3 cm。两岩组的沉降速度(曲线的斜率)随着 时间逐渐降低,最终趋近于零。在 42 个月左右流固 耦合达到稳定状态,Ⅱ、N岩组的沉降之和占总沉降 的 73.9%。

Ⅱ、IV岩组为坝基中的软弱夹层,且该水库位于 7级地震烈度区。《水工建筑物抗震设计规范(DL 5073—2000)》中表明,重要工程地基中的软弱粘土 层,应进行专门的抗震试验研究和分析。地基中的 软弱粘土层的标准贯入锤击数 N_{63.5} ≪4 时,7 级地 震烈度时可判断为液化土。

试验发现,Ⅱ、Ⅳ岩组的标准贯入击数最小值 18击,最大值20击,平均值19击,即N_{63.5}=19>4。 因此,Ⅱ、Ⅳ岩组为非液化砂土,不考虑土体的液化。

4.3 Ⅲ岩组特性分析

Ⅱ、Ⅲ、Ⅳ岩组的渗透系数分别为:2×10⁻⁶ m/s、1×10⁻⁵ m/s、2×10⁻⁶ m/s,Ⅲ相对Ⅱ、Ⅳ岩组 透水性较强,故渗入Ⅲ岩组的水不易排出,形成一个 相对封闭的承压层。研究发现,当承压水头大于2 倍上覆土层厚度时,有可能造成顶托破坏^[13]。

经计算,Ⅲ岩组承压层对Ⅱ岩组的顶托力为 2.98×10⁵ N/m²,等于 29.8 m 的承压水头;上覆土 层厚度为 22.7 m,承压水头 29.8 m 小于 2 倍上覆 土层厚度 45.4 m。由此可见,Ⅲ岩组不可能造成上 覆土层的顶托破坏。

4.4 V 岩组特性分析

V岩组位于坝基的底层,渗透系数为 1×10⁻⁵ m/s,透水性较强。由于坝基采用全封闭式防渗墙, 穿过 V 岩组,截面单宽渗流量为 2.39×10⁻⁷ m³•s⁻¹,占总渗流量的 4.59%,对整个坝基渗流量 影响不大。V岩组会对 N 岩组产生向上的顶托力, 但作用力很小,可忽略该作用力。

4.4 岩组间的接触冲刷

接触冲刷的本质是细土层中的细颗粒从粗土层 孔隙中流失,即粗土层的孔隙粒径大于细土层可移 动颗粒粒径。 I 岩组平均粒径为 17.23~29.63 mm, II 岩组的平均粒径为 0.32~0.6 mm,两岩组 粒径相差较大,且位于坝基的上部,符合接触冲刷的 基本条件,存在接触冲刷的可能性。

刘杰^[11]的《土的渗透破坏及控制研究》表明:无 黏性土层不产生接触冲刷的条件还可以表示为 $k_{\pm} / k_{\pm} \leq 60$ 。文中 I、II 岩组的渗透系数 4×10⁻⁵ m/s、2×10⁻⁶,渗透系数之比 $k_{I} / k_{II} = 20 < 60$ 。因 此, I、II 岩组间不会发生接触冲刷。

同理,Ⅲ、Ⅳ岩组之间也不会发生接触冲刷。

5 结论

1)以比奧固结理论为基础的渗流场与应力场全 耦合模型,考虑了土体的非线性流变以及土体固结 变形过程中孔隙度、渗透系数、弹性模量及泊松比的 变化,针对西藏达嘎水电站多元结构深厚覆盖层透 水地基中各岩组的力学特性进行计算,结果更加接 近实际情况。

2)深厚覆盖层多元结构坝基各层在流固耦合过 程中力学特性、变形规律等差异较大,在分析时关注 的具体问题也不尽相同。Ⅰ岩组透水性较强,渗透 破坏类型为管涌,且为主要的渗流通道,下游区域也 是渗流出口区域。因此,应在Ⅰ岩组表层增设反滤 层和排水设施,防止发生渗透破坏;Ⅱ、Ⅳ岩组的沉 降占总沉降的73.9%,对坝基沉降起主导作用,应 该采取工程措施增大其刚度,减小沉降量,并对其液 化特性进行验算。Ⅲ岩组为坝基中的承压层,对下 游Ⅱ岩组产生向上的顶托力,但由于位置较深,并不 能对上部结构造成影响。Ⅰ、Ⅱ岩组和Ⅲ、Ⅳ岩组彼 此渗透系数之比不大于 60,土层间不会发生接触 冲刷。

坝基快速固结时间仅占总固结时间的 35.7%,

固结度却达到 91.5%。而 91.6%的孔隙水压力在 快速衰减阶段(总衰减时间的 23.8%)被消散。

3)坝基采用封闭式垂直防渗墙有效地遏制了渗 流破坏和渗流量,也将坝基在库水位作用下的沉降 变形控制在防渗墙上游区域。上游坝基变形对防渗 墙产生了较大的水平推力,若防渗墙抗弯刚度 EI 值 较小,容易发生拉伸破坏。因此,对防渗墙上游坝基 应该采取固结灌浆等措施;或者加大防渗墙的尺寸; 或者采用柔性的土工膜防渗墙。

参考文献:

- [1]胡宪洲. 石佛寺水库坝基防渗及抗震加固技术的研究 与应用[D]. 南京:河海大学,2004.
 HU X Z. Study and application on shifosi reservoir dams foundation seepage treatment and anti-earthquake liquefaction reinforcing technology [D]. Nanjing: Hohai University, 2004. (in Chinese)
- [2] 吴梦喜,杨连枝,王锋.强弱透水相间深厚覆盖层坝 基的渗流分析[J].水利学报,2013(12):1439-1447.
 WU M X, YANG L Z, WANG F. Seepage analysis of a dam foundation with deep deposit composed of strong and weak permeable layers alternately [J]. Shuili Xuebao, 2013 (12): 1439-1447. (in Chinese)
- [3] WU M. A finite-elemnt algorithm for modeling variably saturated flows [J]. Journal of Hydrology, 2010(3/ 4): 315-323.
- [4] OZCOBAN S, MEHMET M. KILIC B H, et cl. Staged construction and settlement of a dam foundaed on soft clay [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133 (8): 1003-1016.
- [5] MERIBG, ASCE M, CHOIYI, et cl. Settlement analysis of embankments on soft clays [J]. Geotch Engrg, 111(4): 441-464.
- [6] ZHANG L J, WANG D S, ZHANG H X, et cl. Stability analysis of gravity dams on sloping layered rock foundation against deep slide [C]// Biennial Asce Aerospace Division International Conference on Engineering, Science, Construction, and Operations in Challenging Environments, 2008: 1-6.
- [7]骆祖江,刘金宝,李朗. 第四纪松散沉积层地下水疏降 与地面沉降三维全耦合数值模拟[J]. 岩土工程学报, 2008,30(2):193-198.
 LUO Z J, LIU J B, LI L. Three-dimensional full coupling numerical simulation of groundwater dewatering and land-subsidence in quaternary loos

sediments [J]. Chinese Jouurnal of Geotechnical Engineering, 2008, 30(2):193-198. (in Chinese)

[8]金玮泽,骆祖江,陈兴贤,等.地下水渗流与地面沉降
 耦合模拟[J].地球科学(中国地质大学学报),2014
 (5):611-619.

JIN W Z, LUO Z J, CHEN X X, et al. Coupling simulation of groundwater seepage and land subsidence [J]. Earth Science (Journal of China University of Geosciences),2014(5):611-619. (in Chinese)

[9] 胡应德, 叶枫, 陈志坚. 土体邓肯-张非线性弹性模型 参数反演分析[J]. 土木工程学报, 2004, 37(2): 54-57.

HU Y D, YE F, CHENG Z J. Back-performing analysis for parameters of duncan-chang nonlinearelastic model [J]. China Civil Engineering Journal, 2004, 37(2): 54-57. (in Chinese)

[10] 廖明亮,刘仕勇.西藏达嘎水电站河床覆盖层坝基的 稳定性评价与计算[J].水电站设计,2000,16(4): 88-91.

LIAO M L, LIU S Y. The calculation and stability evaluation of Tibet Daga hydropower station foudation on thick overburden [J]. Design of Hydropower Station, 2000, 16(4):88-91. (in Chinese)

- [11] 刘杰. 土的渗透破坏及控制研究[M]. 北京:中国水利 电力出版社, 2014.
 LIU J. Study on the seepage failure and control of soil
 [M]. Beijing: China Water Power Press, 2014. (in Chinese)
- [12] 李雷,谢晓华. 碾压土石坝沉降计算的改进分层总和 法[J]. 岩土工程学报,1992(5):65-69.
 LI L, XIE X H. The settlement calculation of compacted earth rock dam based on the imroved layer summation method [J]. Chinese Journal of Geotechnical Engineering,1992(5):65-69. (in Chinese)
- [13] 陈平货,秦红军,郝深志.南水北调沁河渠道倒虹吸承 压水顶托破坏分析[J].西部探矿工程,2007,19(9): 191-193.

CHEN P H, QIN H J, HAO S Z. The analysis of backwater destruction on inverted siphon confined water of water diversion channel of Qinhe River[J]. West-china Exploration engineering, 2007, 19(9): 191-193. (in Chinese)

(编辑 胡玲)