doi:10.11835/j.issn.1674-4764.2017.05.010

混凝土裂缝处碳化深度计算模型

田稳苓1,2,常翔宇1,王浩宇1,余建福1

(1. 河北工业大学 土木与交通学院,天津 300401;2. 河北省土木工程技术研究中心,天津 300401)

摘 要:普通钢筋混凝土结构一般都是带裂缝工作,裂缝的存在会使 CO₂ 更易侵入混凝土内部,加 速混凝土的碳化,对结构的耐久性不利。结合已有研究成果,定义了裂缝对混凝土碳化的影响系数 γ_e,通过对预制裂缝的砂浆及混凝土试件进行碳化试验,分析了水灰比、碳化时间、环境相对湿度、 裂缝宽度、裂缝深度对 γ_e 的影响,得出裂缝处混凝土碳化深度计算模型,并通过实际工程进行了 验证。结果表明,裂缝宽度范围为 0.06~0.7 mm 时,模型均适用,且桥梁运营时间对 γ_e 影响不 显著。

关键词:钢筋混凝土结构;裂缝;碳化;计算模型 中图分类号:TU375 文献标志码:A 文章编号:1674-4764(2017)05-0071-08

Calculation model of carbonation depth in concrete cracks

Tian Wenling^{1,2}, Chang Xiangyu¹, Wang Haoyu¹, Yu Jianfu¹

School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin 300401, P. R. China;
 Civil Engineering Technology Research Center of Hebei Province, Tianjin 300401, P. R. China)

Abstract: Reinforced concrete structures generally work with cracks. Base on the studies at home and abroad, a crack influence coefficient about concrete carbonation γ_c , is defined. Mortar and concrete specimens with prefabricated cracks have been made for carbonation test. And the effect of water cement ratio, carbonation time, environment relative humidity, crack width, crack depth on γ_c is analyzed. A calculation model about carbonation depth in concrete cracks is obtained. Actual projects have been implemented to validate the model. It is shown that the model is applicable when the width of cracks in the range of $0.06 \sim 0.7$ mm, and the bridge operation time have no significant effect on γ_c . Keywords: reinforced concrete structures; crack; carbonation; calculation model

普通钢筋混凝土结构一般都是带裂缝工作,裂缝的存在,使 CO₂ 更易进入混凝土内部,导致裂缝 处混凝土碳化深度加大,从而过早诱发钢筋的锈蚀, 造成结构耐久性下降。对混凝土的碳化研究已较为 成熟^[1-5],但对带裂缝混凝土的碳化研究较少,雷 涛^[6]通过研究不同裂缝宽度混凝土试件在干燥环境 (环境相对湿度 20%)下碳化后裂缝处的碳化深度 发现,在干燥环境下,开裂混凝土沿着裂缝壁发生碳 化反应,碳化深度会直达裂缝前端,碳化深度与裂缝 宽度关系不大。刘欣等^[7]结合试验,分析了钢筋混

收稿日期:2016-11-07

基金项目:河北省交通运输厅科技计划项目(Y-2012047)

作者简介:田稳苓(1961-),女,教授,博士,主要从事新型建筑材料及结构体系研究,(E-mail)fish10086@126.com。 Received:2016-11-17

Foundation item: Science and Technology Project of Hebei Provincial Transportation Department (No. Y-2012047)

Author brief: Tian Wenling (1961-), professor, PhD, main research interests: new building materials and structural system, (E-mail): fish10086@126.com.

第 39 卷

凝土结构细微裂缝(0.10~0.20 mm)对碳化深度和 钢筋锈蚀的影响,得出微裂缝处的碳化深度是非裂 缝处碳化深度的 1.4~1.8 倍。Ann 等^[8] 对桥梁墩 柱上不同损伤程度的混凝土进行碳化深度测试,发 现当混凝土裂缝宽度为 0.10~0.20 mm 时,裂缝处 混凝土碳化深度大约是非裂缝处碳化深度的 2.12 倍。金祖权等^[9]通过三点弯曲使混凝土试件产生裂 缝,发现当裂缝宽度小于 0.07 mm 时,裂缝宽度对 混凝土裂缝处碳化深度影响不大;当裂缝宽度大于 0.07 mm 时,碳化深度随裂缝宽度增加而呈二次函 数增加。Zhang等^[10]通过冻融循环使混凝土产生裂 缝,发现当裂缝宽度在 0~0.10 mm 时,碳化深度随 裂缝宽度增加而快速增加,当裂缝宽度超过 0.10 mm时,碳化深度随裂缝宽度的变化量很小。学者 们采用不同的实验方法,研究了相对湿度和裂缝宽 度对碳化深度的影响,朱元祥等[11]对带裂缝混凝土 碳化深度进行了理论分析,建立了裂缝处混凝土碳 化深度的随机过程模型,但该模型仅考虑了基于概 率的碳化速度经验系数及裂缝宽度,且其中的经验 系数是由特定条件下的试验结果统计所得,不适用 于条件变化的实际工程。笔者借鉴 Jiang等^[12]建立 的疲劳损伤混凝土碳化模型,提出了裂缝对混凝土 碳化的影响系数 γ,,在室内试验基础上,系统分析了 水灰比、碳化时间、环境相对湿度、裂缝宽度、裂缝深 度对 γ。的影响,建立了综合考虑环境相对湿度、裂 缝宽度、裂缝深度的裂缝处混凝土碳化深度计算模 型,并通过实际工程进行了验证。结果表明,模型计 算结果与工程实际吻合良好,模型可用于带裂缝混 凝土结构的寿命预测。

1 裂缝处碳化模型形式的确定

Jiang等^[12]认为疲劳损伤混凝土的碳化深度取 决于 CO₂ 在未损伤混凝土和裂缝中的扩散系数,并 在 Papadakis 碳化模型基础上,结合混凝土梁疲劳 损伤后的碳化试验结果,建立了疲劳损伤混凝土的 碳化模型

$$x_{\rm c} = x_0 + \alpha x_1 \tag{1}$$

式中:*x*。为疲劳损伤混凝土碳化深度,mm;*x*。为未 损伤混凝土碳化深度,mm;*x*1为混凝土在疲劳荷载 下最大应变时的 CO₂ 扩散系数计算得到的碳化深 度,mm;α为与水灰比、相对湿度、碳化时间等因素 有关的系数,无量纲。

因 x_0 也受水灰比、相对湿度、碳化时间等因素的 影响^[2-5],取与各因素对 x_0 、 ax_1 影响程度有关的系数 γ 使 $\gamma x_0 = ax_1$,并令 $1 + \gamma = \gamma_c$,式(1)可以改写为

 $x_{c} = x_{0} + \gamma x_{0} = (1 + \gamma) x_{0} = \gamma_{c} x_{0}$ (2)

根据式(2)的表达形式,定义 X_c 为裂缝处碳化 深度,mm;X 为非裂缝处碳化深度,mm; $\diamond \gamma_c = X_c / X$,为裂缝对混凝土碳化的影响系数,即

$$X_{\rm c} = \gamma_{\rm c} X \tag{3}$$

式中:X 可通过实验测得;γ。通过试验研究及理论 分析,综合确定γ。与水灰比、相对湿度、碳化时间、 裂缝宽度、裂缝深度之间的关系模型,从而建立裂缝 处碳化深度计算模型。

2 预制裂缝试件碳化试验及结果

采用尺寸为 100 mm×100 mm×100 mm 的立 方体砂浆试件及尺寸为 100 mm×100 mm×400 mm 的 C40 混凝土试件进行试验。砂浆与混凝土的 配合比及其 28 d 抗压强度分别见表 1、表 2。

表 1 砂浆配合比 Table 1 Mortar mix ratio

水灰比	水泥/ (kg・m ⁻³)	砂/ (kg・m ⁻³)	水/ (kg・m ⁻³)	28 d 抗压强度 平均值/MPa
0.4	735	1 470	294	54.0
0.5	714	1 428	357	45.2
0.6	694	1 388	417	33.4

表 2 混凝土配合比 Table 2 Concrete mix ratio

水泥/	粉煤灰/	砂/	5~10 mm 碎石/	10~20 mm 碎石/	减水剂/	水/	28 d 抗压强度平
(kg・m ⁻³)	(kg・m ⁻³)	(kg•m ⁻³)	(kg•m ⁻³)	(kg•m ⁻³)	(kg・m ⁻³)	(kg•m ⁻³)	均值/MPa
298	99	761	274	821	3.6	143	49.1

通过预置薄片法在砂浆和混凝土试件中预制裂缝。首先,将薄钢片固定在模板中,再拌制砂浆或混凝土,拆模后标准养护28d,在混凝土养护结束后,

借助电子万能试验机将薄片缓缓拔出。通过改变薄 钢片的厚度、宽度来控制预制裂缝的宽度、深度。砂 浆试件裂缝宽 0.2 mm,裂缝深 40 mm,水灰比为 0.4、0.5、0.6,碳化时间为3、7、14d,共9组,每组3 个试件,合计27个试件(见表3)。混凝土试件裂缝 宽0.1、0.2、0.3mm,裂缝深10、20、30、40、50、60 mm,碳化时间为3d,共18组,每组3个试件,合计 54个试件(见表4)。

依据《普通混凝土长期性能和耐久性能试验方 法标准》(GB/T 50082—2009),对各试件进行加速 碳化试验,在碳化箱内(湿度为 70±5%)碳化至 3、 7、14 d时,取出试件,垂直于裂缝面切开,在切开面 上喷洒质量分数1%酚酞酒精溶液,经 30 s后,测量 碳化深度。水灰比为 0.6,碳化至 14 d 的单缝砂浆 试件碳化图如图 1(a)所示,裂缝宽度 0.3 mm,深度 60 mm,碳化至 14 d 的混凝土试件碳化图如图 1(b) 所示。

(a) 砂浆试件

(b) 混凝土试件

图 1 预制裂缝试件碳化图

Fig. 1 Carbonation picture of prefabricated crack specimen

砂浆试件在不同水灰比 W/C 及碳化时间 T 下 的 X_e, X, γ_e 的值如表 3 所示,混凝土试件在不同裂 缝宽度 w 及裂缝深度 d_e 下的 X_e, X, γ_e 的值如表 4 所示。

表 3 不同水灰比和碳化时间砂浆试件的碳化深度 Table 3 Carbonation depth of mortar specimens with

different water cement	ratio	and	carbonation	time
------------------------	-------	-----	-------------	------

W/C	T/d	$X_{ m c}/{ m mm}$	X/mm	$\gamma_{\rm c}$
0.4	3	0.4	0.3	1.33
0.4	7	1.1	0.4	2.75
0.4	14	2.7	1.3	2.08
0.5	3	5.5	2.7	2.04
0.5	7	9.1	3.8	2.39
0.5	14	11.0	5.7	1.93
0.6	3	9.2	4.5	2.04
0.6	7	13.0	6.2	2.10
0.6	14	22.0	9.8	2.24

表 4	不同裂缝宽度和深度混凝土试件的碳化深度
Fable 4	Carbonation depth of concrete specimens with

different crack	widths	and	depths
-----------------	--------	-----	--------

$d_{ m c}/{ m mm}$	w/mm	$X_{ m c}/{ m mm}$	$X \ /\mathrm{mm}$	$\gamma_{ m c}$
10	0.1	11.9	11.0	1.08
10	0.2	13.9	10.6	1.31
10	0.3	16.3	10.7	1.52
20	0.1	12.9	12.0	1.08
20	0.2	14.6	11.0	1.33
20	0.3	16.6	11.2	1.48
30	0.1	13.5	9.5	1.42
30	0.2	16.2	10.0	1.62
30	0.3	17.3	10.4	1.66
40	0.1	14.2	10.8	1.31
40	0.2	16.8	10.7	1.57
40	0.3	18.4	11.1	1.66
50	0.1	14.3	11.3	1.27
50	0.2	16.9	10.9	1.55
50	0.3	18.3	10.3	1.78
60	0.1	14.3	11.6	1.23
60	0.2	16.9	10.3	1.64
60	0.3	18.5	10.7	1.73

3 各因素与 γ。之间的关系研究

3.1 W/C、T 与 γ_c 之间的关系

运用 SPSS 软件对表 3 中数据进行分析,当其 他因素一定的条件下,W/C、T 对 γ。影响显著性水 平 α 分别为 0.831、0.571,即置信水平仅为 0.169、 0.429,裂缝处碳化深度未大于裂缝深度时,计算模 型中可不考虑水灰比和碳化时间的影响。

3.2 *w* 与 γ_c 之间的关系

根据表 4 数据,绘制不同 d。时 w 与 γ。关系曲 线和不同 w 时 d。与 γ。关系曲线,如图 2、图 3 所示。

由图 2 可见,在 d_c、环境相对湿度 RH 一定的情况下,γ_c 随着 w 的增大而增加,但增加速度逐渐减小,与金祖权等^[10]研究结果一致,增加速度逐渐减小的主要原因是 CO₂ 在裂缝内壁混凝土中的扩散 速度逐渐接近于在外表面的扩散速度。

根据 w 与 γ_c 关系曲线图,取 w 影响系数 γ_w 形 式为

$$\gamma_w = a_w - \frac{b_w}{w + c_w}$$
(4)

图 2 w 与 γ。关系曲线

Fig. 3 Relationship curves between d_c and γ_c

3.3 *d*_c 与 γ_c 之间的关系

因裂缝内部几乎无空气流动,且由于裂缝壁的 吸附作用,水分子较难扩散到外界空气中,裂缝内的 水分汽化比混凝土表面的水分汽化慢^[12]。在混凝 土中孔隙水不断蒸发情况下,裂缝内保持较高相对 湿度,甚至达到 100%,在裂缝开口位置,因与外界 环境的蒸气压差会形成湿度梯度。当环境相对湿度 在 50%~70%时,混凝土碳化速度最大,在当环境 相对湿度接近 100%时,混凝土碳化几乎停止^[13-14]。 因此,存在一个临界裂缝深度 d_0 ,当 $d_c < d_0$ 时, γ_c 随着 d_c 增加,当 $d_c \ge d_0$ 时 γ_c 变化量很小,视为定 值。由图 3 可知,当 $d_c < 30$ mm 时, γ_c 随着 d_c 以二 次函数增加;当 $d_c \ge 30$ mm 时, γ_c 变化量较小。即 在本试验条件下 $d_0 = 30$ mm。且当 0.1 mm $\le w \le$ 0.3 mm 时,w 对 d_0 影响不大。

雷涛^[6]在湿度为 20%的条件下,对带裂缝混凝 土进行了碳化试验。当裂缝宽度大于 0.13 mm、裂 缝深度约 66 mm 时,裂缝尖端存在碳化痕迹,即当 RH=20%时, $d_0 \ge 66$ mm。试验湿度为 70%,即当 RH=70%时, $d_0 = 30$ mm。因此,可以认为 RH 影 响 d₀ 的值,简化考虑两者关系为

$$d_0 = (1 - RH) \times 100 \text{ mm} \tag{5}$$

在 RH = 70%情况下,当 $d_c \ge d_0$ 时, γ_c 仅与 w有关;当 $d_c < d_0$ 时, $\gamma_c \in w$ 、 d_c 影响。则取 γ_c 的表 达式为

$$\gamma_{c} = \begin{cases} (\gamma_{w} - 1)\gamma_{d_{c}} + 1 & (d_{c} < d_{0}) \\ \gamma_{w} & (d_{c} \ge d_{0}) \end{cases}$$
(6)

同时,当*d*_e<X_e时,裂缝位置碳化前端开始凸起,形状不再为图1中的尖角状,X_e/X逐渐减小,表达式不再适用,因此其适用范围为X_e≤*d*_e。

3.4 RH 与 γ。之间的关系

环境相对湿度越低,裂缝内失水速度越快,二氧 化碳在裂缝内扩散速度越快,裂缝内壁混凝土还会 保有一定水分,能保证初期碳化反应的进行。因此, 裂缝处混凝土碳化深度随着环境相对湿度的降低而 单调增加。借鉴文献[2-4]混凝土碳化模型中湿度 与碳化速度的二次方程关系,及文献[5]混凝土碳化 模型中湿度影响系数的形式,定义 γ_{RH} 为湿度修正 系数,考虑边界条件:当 RH 为 100%时,裂缝处混 凝土碳化速度接近于 0,取 γ_{RH} 为 0;试验条件为 RH=70%,不进行修正,即 γ_{RH} 为 1。取 γ_{RH} 与 RH 关系式为

$$\gamma_{RH} = \frac{(1 - RH)^2}{(1 - 70\%)^2}$$
(7)

4 裂缝处混凝土碳化深度计算模型

4.1 模型的建立

取表 4 中 $d_c \ge 30$ mm 时不同的 w 及对应的 γ_c 平均值(0.1,1.308 5)、(0.2,1.595 3)、(0.3,1.706 7) 代入式(4)中,求得 $a_w = 1.959$ 6、 $b_w = 0.082$ 7、 $c_w = 0.027$,即

$$\gamma_w = 1.959 \ 6 - \frac{0.082 \ 7}{w + 0.027}$$
(0.1 mm $\leq w \leq 0.3$ mm) (8)

根据图 3 中 d_c 与 γ_c 关系曲线形状,令

$$\gamma_{d_c} = ad_c^2 + bd_c + c \tag{9}$$

式中:a、b、c为与w、d。有关的参数或常数。

将两个端点(0,0)、(d_0 ,1),代人式(9)中,求得 $b = -\frac{d_0^2 a - 1}{d_1}, c = 0,$ 即

$$\gamma_{d_{\rm c}} = a d_{\rm c}^2 - \frac{d_{\rm 0}^2 a - 1}{d_{\rm 0}} d_{\rm c} \tag{10}$$

因 $d_c = 10$ mm 时, $d_c < X_c$,不参与计算。为简 化计算,取 $d_c = 20$ mm = $2d_0/3$,求得各宽度下的 γ_d 分别代人式(10),得:w=0.1 mm 时, $a = \frac{1.83}{d_0^2}$; w=0.2 mm 时, $a = \frac{0.53}{d_0^2}$;w=0.3 mm 时, $a = \frac{-0.06}{d_0^2}$ 。 从而拟合得到 a 与 w 的关系式 $a = \frac{1}{d_0^2}(35.5w^2 - 23.65w + 3.84)$ (11) 即裂缝处碳化深度计算模型 $X_c = \gamma_c X$ ($X_c \leq d_c$) $\gamma_c = \begin{cases} [(\gamma_w - 1)\gamma_{d_c} + 1]\gamma_{RH} & (d_c < d_0) \\ \gamma_w \gamma_{RH} & (d_c \geq d_0) \end{cases}$ (12)

式中: γ_{RH} 、 γ_w 、 γ_{d_c} 分别通过式(7)、(8)、(10)、(5)、(11)进行计算。

4.2 模型计算值与试验数据对比

朱元祥等^[11] 认为影响裂缝处混凝土碳化深度 的因素较多,每个影响因素都具有随机性,且它们相 互影响,难以定量考虑,仅考虑了基于概率的碳化速 度经验系数 A_{cr}及裂缝宽度 w,建立了计算模型(以 下简称朱元祥模型)为

$$y = (\mu_A + U\sigma_A) w^{\frac{1}{2}} T^{\frac{1}{4}}$$
 (13)

式中:y 为裂缝处碳化深度, mm; $\mu_{A_{er}}$ 为 A_{er} 的均值, 取 42.59; $\sigma_{A_{er}}$ 为 A_{er} 的方差, 取 12.28; U 按 95% 保 证率取 1.645; w 为裂缝宽度, mm; T 为碳化时间, a, 加速试验 14 d 等效为实际碳化 20.2 a。

将该计算模型与朱元祥模型分别结合表 4 中试 验数据(不含 d_c=10 mm)进行计算,并与试验值进 行对比分析,计算结果如表 5 所示。

表 5 模型计算值与试验值对比 Table 5 Comparison between model calculation values and experimental values

d /mm	~~/mm	2	24.51	γ 4.	V .1 / V	Y # / Y \=
a _c / mm	w/ mm	1 chd	/ ctf	/ c木	CTL / CTT	/ c木 / / c试
20	0.1	1.08	1.080	3.51	1.00	3.25
20	0.2	1.33	1.327	5.41	1.00	4.07
20	0.3	1.48	1.481	6.51	1.00	4.40
30	0.1	1.42	1.308	4.43	0.92	3.12
30	0.2	1.62	1.595	5.95	0.98	3.67
30	0.3	1.66	1.707	7.01	1.03	4.22
40	0.1	1.31	1.308	3.90	1.00	2.98
40	0.2	1.57	1.595	5.56	1.02	3.54
40	0.3	1.66	1.707	6.57	1.03	3.96
50	0.1	1.27	1.308	3.73	1.03	2.94
50	0.2	1.55	1.595	5.46	1.03	3.52
50	0.3	1.78	1.707	7.08	0.96	3.98

			续表 5			
$d_{ m c}/{ m mm}$	w/mm	$\gamma_{ m cit}$	γ_{ct+}	$\gamma_{c \pm}$	$\gamma_{\rm ctt}/\gamma_{\rm ctt}$	$\gamma_{c \ddagger} / \gamma_{c i t}$
60	0.1	1.23	1.308	3.63	1.06	2.95
60	0.2	1.64	1.595	5.78	0.97	3.52
60	0.3	1.73	1.707	6.81	0.99	3.94

注:γ_{cit}为 γ_c 试验值;γ_{cit} 为应用本文模型的 γ_c 计算值;γ_{ck} 为应用 朱元祥模型计算出 y/X 的值。

图 4 本文模型、朱元祥模型计算值与试验值对比图 Fig. 4 Comparison diagram between model calculation values and experimental values of the model of this paper and Zhu Yuanxiang's model

由表 5 可得 γ_{ett} /γ_{ett} 的平均值为 1.001 1,标准 差为 0.025 1;γ_{ett} /γ_{ett} 的平均值为 3.603 8,标准差 为 0.400 9。由图 4 可明显看出,通过朱元祥模型计 算结果与试验室预制裂缝碳化试验结果偏差较大, 是因为其考虑的因素较少,在此基础上建立的概率 模型很难适用于大多数情况;而本文模型综合考虑 多个因素,计算结果与试验结果吻合程度较高。

5 计算模型的工程验证

为验证模型的可应用性,在不同地区、不同年份 的混凝土桥梁主梁上选取了43条裂缝,裂缝分为正 常受弯裂缝及预应力梁纵向裂缝2种类型。正常受 弯裂缝为钢筋混凝土梁在荷载作用下,跨中附近产 生的正常受力裂缝,桥梁运营时即会出现;预应力梁 纵向裂缝主要由于泊松效应等原因,在混凝土较薄 弱位置产生,如后张预应力空心板梁空心位置、预应 力箱梁波纹管位置,此类裂缝一般在桥梁运营前即 会出现。因此,裂缝产生的时间与桥梁混凝土开始 碳化的时间比较接近,不考虑其时间差的影响。

在裂缝位置及相同环境条件下同一片梁非裂缝 位置借助内径为5 cm 的钻芯机钻取芯样,裂缝位置 芯样钻取的长度大于超声波法测出的裂缝深度值, 非裂缝位置芯样钻取 5~10 cm。将芯样上下各垫

一根钢筋,在压力试验机上劈裂,其中带裂缝芯样垂 直于裂缝劈裂,如图 5(a)所示。劈裂前,可在两侧 粘贴胶带,防止出现所取芯样强度低、骨料过多导致 芯样碎裂、难以拼装等问题。将芯样劈裂后,进行碳 化深度测量,方法同第2节。芯样测试情况如图5 (b)所示。

根据本文模型及朱元祥模型,对各条裂缝的γ。 值进行计算,并与实测值进行对比,见表6。

图 5 芯样碳化深度测试

Fig. 5 Carbonation depth test of core samples

表 6 模型计算值与实测值对比

Table 6	Comparison b	etween model	calculation	values and	measured	values	(engineering example	ple)

序号	建成	裂缝	混凝土	w/mm	$d_{ m c}/{ m mm}$	<i>RH/</i>	X/	$X_{ m c}/$	γ _{c测}	$\gamma_{ m cit}$	$\gamma_{\mathrm{c} \pm}$	γ _{cit} ∕	γ _{c朱} /
1	1000	天生 9米	<u> </u>	0.06	57	50.04	12 0	20.0	1 667	1 700	2 602	7 c测 1 0 7 0	1 561
1	1999	4 矢	C40	0.00	27	59.94	10.5	20.0	1.007	2.072	1 619	1.079	0.086
2	1000	1 尖	C30	0.07	00 41	50.90 60.52	19.5	32. U	2 000	2.072	2 995	1.203	0.900
3	2001	4 矢	C20	0.08	41	50.70	2.0	15 5	1 028	2.034	4 260	1.100	2 254
4	2001	1 尖	C30	0.00	150	59.79	0.0	15.5	1. 930	2.132	4.309	1.100	2.234
5	2003	1 尖	C30	0.10	71	50.90	11.0	37.0	2.170	2.449	2.210	1.125	1.019
0	2001	1 尖	050 8	0.10	/1	59.79	11.0	25.0	2.273	2.351	3.002	1.034	1.003
7	1992	一类	250 号	0.10	200	64.93	20.0	33.0	1.650	1.788	2. 197	1.084	1.332
8	2009	2 奕	C50	0.10	88	60.71	5.0	10.0	2.000	2.244	6.460	1.122	3.230
9	1986	1类	400 号	0.10	58	60.93	18.5	38.0	2.054	2.219	2.512	1.080	1.223
10	1992	1类	250 号	0.12	200	64.93	19.5	34.0	1.744	1.909	2.469	1.095	1.416
11	1986	1 类	400号	0.12	65	60.93	17.5	40.0	2.286	2.369	2.909	1.036	1.272
12	1992	1 类	250 号	0.12	59	61.18	15.0	33.0	2.200	2.339	3.210	1.063	1.459
13	2009	2 类	C50	0.13	120	60.71	4.5	11.0	2.444	2.458	8.183	1.006	3.348
14	1986	1 类	400 号	0.13	71	60.93	17.5	42.0	2.400	2.430	3.028	1.013	1.262
15	2003	1类	C30	0.14	86	58.63	12.5	33.0	2.640	2.785	3.569	1.055	1.352
16	1992	1 类	250 号	0.14	200	64.93	19.0	38.0	2.000	2.001	2.737	1.001	1.368
17	2009	2 类	C50	0.14	132	60.71	4.5	11.0	2.444	2.512	8.492	1.028	3.475
18	1992	1类	250 号	0.14	62	61.18	15.5	37.0	2.387	2.452	3.355	1.027	1.405
19	1992	1 类	250 号	0.14	65	61.18	16.5	36.0	2.182	2.452	3.152	1.124	1.444
20	1993	1 类	250 号	0.15	138	60.99	22.0	49.0	2.227	2.523	2.421	1.133	1.087
21	1986	1类	400 号	0.15	75	60.93	18.0	42.0	2.333	2.531	3.162	1.085	1.355
22	1992	1类	250 号	0.15	67	61.18	16.0	37.0	2.313	2.499	3.364	1.080	1.454
23	2009	2 类	C50	0.16	143	60.71	5.0	12.0	2.400	2.603	8.171	1.085	3.404
24	1986	1 类	400 号	0.16	74	60.93	18.5	44.0	2.378	2.574	3.177	1.082	1.336
25	1992	1 类	250 号	0.17	66	61.18	17.0	41.0	2.412	2.578	3.371	1.069	1.397
26	1992	1 类	250 号	0.18	200	64.93	20.0	38.0	1.900	2.132	2.948	1.122	1.552
27	1986	1类	400 号	0.18	78	60.93	18.0	45.0	2.500	2.646	3.464	1.058	1.385
28	1987	1类	400 号	0.20	46	60.92	17.0	36.5	2.147	2.707	3.833	1.261	1.785
29	2003	1 类	C30	0.20	88	58.63	13.0	36.5	2.808	3.034	4.102	1.080	1.461
30	1992	1 类	250 号	0.20	200	64.93	19.0	41.0	2.158	2.180	3.271	1.010	1.516
31	1999	2 类	C40	0.20	63	59.94	12.0	31.0	2.583	2.845	4.752	1.101	1.840

							续表 6						
序号	建成 年份	裂缝 类型	混凝土 强度等级	w/mm	$d_{ m c}/{ m mm}$	RH/ %	X/ mm	$X_{ m c}/$ mm	γ _c 测	Yeit	γck	γ _{c计} / γ _{c测}	γ _{c朱} / γ _{c测}
32	1999	2 类	C40	0.20	86	59.94	10.0	27.0	2.700	2.845	5.702	1.054	2.112
33	1999	2 类	C40	0.20	88	59.94	10.5	28.0	2.667	2.845	5.430	1.067	2.036
34	1999	2 类	C40	0.20	68	59.94	11.0	28.0	2.545	2.845	5.184	1.118	2.037
35	1999	2 类	C40	0.20	93	59.94	11.0	29.0	2.636	2.845	5.184	1.079	1.966
36	1999	2 类	C40	0.20	85	59.94	10.5	29.0	2.762	2.845	5.430	1.030	1.966
37	1999	2 类	C40	0.22	79	59.94	11.0	30.0	2.727	2.897	5.437	1.062	1.994
38	1999	2 类	C40	0.22	82	59.94	11.0	29.5	2.682	2.897	5.437	1.080	2.027
39	1987	1 类	400 号	0.24	128	61.59	17.0	45.0	2.647	2.705	4.199	1.022	1.586
40	1987	1 类	400 号	0.25	136	60.92	20.0	53.0	2.650	2.819	3.643	1.064	1.375
41	1987	1 类	400 号	0.25	151	61.00	18.0	46.5	2.583	2.807	4.048	1.087	1.567
42	1993	1 类	250 号	0.50	146	60.99	21.0	58.5	2.786	3.048	4.630	1.094	1.662
43	1999	2 类	C40	0.70	52	60.53	12.0	38.0	3.167	3.195	8.889	1.009	2.807

注:1.裂缝类型中,1类为正常受弯裂缝,2类为预应力梁纵向裂缝。

2. 根据中国气象数据网上"中国地面累年值数据集(1981—2010年)"确定桥梁所在区县与市区 1981—2010 年年平均湿度差值,并通过"中国地面国际交换站气候资料月值数据集"查询自桥梁建成至今市区年平均湿度,RH为两者之和。

3. γ_{c测}为 γ_c 实测值, γ_{c计}为应用本文模型的 γ_c 计算值, γ_c 未为应用朱元祥模型计算出 y/X 的值。

图 6 本文模型、朱元祥模型计算值与工程实测值对比图 Fig. 6 Comparison diagram between model calculation values and measured values of the model of this paper and Zhu Yuanxiang's model

由表 6 可知,43 组试验的 γ_{ctt}/γ_{cm} 平均值为 1.076 6,标准差为 0.054 8,略大于表 5 中 $\gamma_{ctt}/\gamma_{ctt}$ 的平均值 1.001 1,可能是因为工程中裂缝为"V" 形,且表面裂缝宽度与裂缝深度之间存在一定的相 关性所致; γ_{ck}/γ_{cm} 平均值为 1.746 9,标准差为 0.640 0。通过 SPSS 软件分析,桥梁运营时间(2016 减去桥梁建成年份)对 γ_{cm} 影响显著性水平 α 为 0.665,即置信水平仅为 0.335,故当 $X_c \leq d_c$ 时,桥 梁运营时间对 γ_c 影响不显著。由图 6 可见,工程实 例裂缝宽度范围为 0.06~0.7 mm,本模型计算结果 与试验结果吻合程度较高,裂缝宽度范围为 0.06~ 0.7 mm。

6 结论

通过理论与试验相结合的方法,定义并研究了 与裂缝宽度、深度及环境相对湿度有关的裂缝对混 凝土碳化的影响系数γ_c,得出了裂缝处碳化深度不 大于裂缝深度,且裂缝宽度在 0.1~0.3 mm 范围的 裂缝处混凝土碳化深度计算模型。通过工程实例验 证,模型计算结果与实测值吻合程度较高。并得出 以下结论:

1)水灰比、碳化时间对 γ。影响不显著。

2)桥梁运营时间对 γ。影响不显著。

3)试验裂缝宽度范围为 0.1~0.3 mm,工程实 例裂缝宽度范围为 0.06~0.7 mm,但提出的计算模 型 γ_c 计算值与试验实测值和工程实例实测值均吻 合较好,模型裂缝宽度范围为 0.06~0.7 mm。

参考文献:

- [1] PAPADAKIS V G, VAYENAS C G, FARDIS M N.
 Fundamental modeling and experimental investigation of concrete carbonation [J]. Materials Journal, 1991, 88 (4): 363-373.
- [2]牛荻涛. 混凝土结构耐久性与寿命预测[M]. 北京:科学 出版社,2003.

NIU D T. Durability and life forecast of reinforced concrete structure [M]. Beijing: Science Press, 2003. (in Chinese)

[3]刘志勇,孙伟.多因素作用下混凝土碳化模型及寿命预 测[J].混凝土,2003(12):3-7.

LIU Z Y, SUN W. Modeling carbonation for corrosion risk service life prediction of concrete under combined action of durability factors [J]. Concrete, 2003(12): 3-7. (in Chinese)

- [4] ISGOR O B, RAZAQPR A G. Finite element modeling of coupled heat transfer, moisture transport and carbonation processes in concrete structures [J]. Cement and Concrete Research, 2004, 26: 57-73.
- [5] GREVE-DIERFELD S, GEHLEN C. Performance based durability design, carbonation part 1-Benchmarking of European present design rules [J]. Structural Concrete, 2016, 17(3): 309-328.
- [6] 雷涛.裂缝宽度对混凝土碳化的影响[J].铁道建筑, 2014(6):156-158.

LEI T. The influence of crack width of concrete carbonation [J]. Railway Engineering, 2014(6): 156-158. (in Chinese)

[7]刘欣,高妍,季海霞,等.钢筋混凝土结构微裂缝下的碳 化试验分析[J]. 徐州建筑职业技术学院学报,2010, 10(1): 25-27.

LIU X, GAO Y, JI H X, et al. Experimental analysis of carbonization on microcracks of reinforced concrete structure [J]. Journal of Xuzhou Institute of Architectural Technology, 2010, 10(1): 25-27. (in Chinese)

- [8] ANN K Y, PACK S W, HWANG J P, et al. Service life prediction of a concrete bridge structure subjected to carbonation [J]. Construction and Building Materials, 2010, 24(8): 1494-1501.
- [9] 金祖权, 侯保荣, 赵铁军, 等. 收缩裂缝对混凝土氯离子

渗透及碳化的影响[J]. 土木建筑与环境工程, 2011,33 (1): 7-11.

JIN Z Q, HOU B R, ZHAO T J, et al. Influence of shrinkage cracks on chloride penetration and crabonation of concrete [J]. Journal of Civil, Architectural & Environmental Engineering, 2011, 33 (1): 7-11. (in Chinese)

- [10] ZHANG S P, ZONG L, DONG L F, et al. Influence of cracking on carbonation of cement-based materials [J]. Advanced Materials Research, 2011, 261-263: 84-88.
- [11] 朱元祥,候应武,屈文俊. 混凝土结构裂缝处的碳化分析[J]. 西北建筑工程学院学报,1998(4):34-38.
 ZHUYX, HOUYW, QUWJ. Analysis of concrete carbonization on cracks of concrete structure [J].
 Journal of Northwestern Institute of Architectural Engineering, 1998(4):34-38. (in Chinese)
- [12] JIANG C, GU X L, ZHANG W P, et al. Modeling of carbonation in tensile zone of plain concrete beams damaged by cyclic loading [J]. Construction and Building Materials, 2015, 77: 479-488.
- [13] JANG J G, KIM G M, KIM H J, et al. Review on recent advances in CO₂ utilization and sequestration technologies in cement-based materials [J]. Construction and Building Materials, 2016, 127: 762-773.
- [14] PAPADAKIS V G, FARDIS M N, VAYENAS C G. Effect of composition, environmental factors and cement-lime mortar coating on concrete carbonation [J]. Materials and Structures, 1992, 25(5): 293-304.

(编辑 胡英奎)