doi:10.11835/j.issn.1674-4764.2018.05.007



## 填海作用对海积软土的抗剪强度影响 试验研究

刘汉民<sup>1,2</sup>,周东<sup>1</sup>,吴恒<sup>1</sup>,焦文灿<sup>1</sup>,王业田<sup>1</sup>

(1.广西大学 土木建筑工程学院;工程防灾与结构安全教育部重点实验室,南宁 530004;2.湖南科技学院 土木与环境工程学院,湖南 永州 425199)

**摘 要:**以软州港临海国区和防城港企沙工业园填海场地海积软土为研究对象,分析了填海场地海 积软土赋存环境要素的变化规律。采用机制模拟技术装置,对海积软土的孔隙水离子化学组分 浓度和上覆填海层厚度发生变化的情况进行了人工模拟制样,获得了"印记"了赋存环境要素的 人工软土样品,并对人工软土样品进行了直剪试验。结果表明:填海层对海积软土层的附加荷载 应力、水力联系变化、水化学场变化三大赋存环境要素可采用"一种土的浸泡荷载联动装置"进行 模拟;随着填海层附加荷载应力的增大,人工软土样的粘聚力 c 和内摩擦角 φ 随之增大;随着浸 泡液不同离子成分浓度变化,对人工软土样的粘聚力 c 和内摩擦角 φ 影响效果不一,随着离子浓 度的增加,Ca<sup>2+</sup>比 Mg<sup>2+</sup>对抗剪强度指标的影响大;填海层附加荷载应力与浸泡液离子组分双因 素同时作用下,对土样的抗剪强度指标存在相互耦合效应,其耦合效应对黏聚力影响明显,对内 摩擦角影响较小。

关键词:填海造地;海积软土;赋存环境;抗剪强度;耦合效应

**中图分类号:**TU447 文献标志码:A 文章编号:1674-4764(2018)05-0054-10

# Experimental analysis on coastal reclamation impact on shear strength of marine soft soil

Liu Hanmin<sup>1,2</sup>, Zhou Dong<sup>1</sup>, Wu Heng<sup>1</sup>, Jiao Wencan<sup>1</sup>, Wang Yetian<sup>1</sup>

(1. College of Civil Engineering and Architecture; Key Laboratory of Disaster Prevention and Structural Safety of the Ministry of Education, Guangxi University, Nanning 530004, P. R. China; 2. College of Civil and Environmental Engineering, Hunan University of Science and Engineering, Yongzhou 425199, Hunan, P. R. China)

Abstract: The variation of the environmental factors of marine soft soil in industry zones of Qinzhou Port and Fangcheng Port was analyzed. The soil soaking load linkage is a self-developed device for mechanism simulation, used to examine the environmental factors of marine soft soil when the thickness of coastal reclamation layer and concentration of chemical constituents of pore water ions changed. The soft soil

Author brief: Liu Hanmin (1981-), PhD candidate, main research interest: environmental geotechnics, E-mail: liuhanmin81@126.com.

Zhou Dong (corresponding author), professor, doctorial supervisor, E-mail: zhd516@163.com.

收稿日期:2017-11-14

基金项目:国家自然科学基金(51178124、51378132)

作者简介:刘汉民(1981-),男,博士生,主要从事环境岩土工程研究,E-mail:liuhanmin81@126.com。

周东(通信作者),男,教授,博士生导师,E-mail:zhd516@163.com。

Received: 2017-11-14

Foundation item: National Natural Science Foundation of China (No. 51178124, 51378132)

samples were obtained artificially. Direct shear tests of threse artificial soft soil samples were carried out. The test results showed that cohesive force c and internal friction angle  $\varphi$  of artificial soft soil samples changed with calcium ion larger than magnesium ion when concentration of calcium ion or magnesium ion increased. There is certain coupling effect between the additional load stress of coastal reclamation layer and ion concentration of soak liquid for the shear strength indexes of the soil. However, the coupling effect of cohesive force is obvious while that of internal friction angle is less significant.

Keywords: coastal reclamation; marine soft soil; environmental factors; shear strength; coupling effect

进入21世纪以来,中国进行了大规模的填海造 地工程[1-3],其中很大一部分成为工业及城市建设用 地。钦州港临海园区和防城港企沙工业园填海造地 工程形成的陆域就是用来作为工业及城市建设用 地,填海区域分布大量的海积软土[4-6]。这类填海造 地工程有几个特点:1)填海形成的陆域面积大。钦 州湾填海面积截止 2011 年已达约 20 km<sup>2[7]</sup>,根据钦 州市城市总体规划,2008-2025年期间的总围填海 工程面积将达到约79 km<sup>2</sup>。2)填海造陆的速度快。 从施工到形成陆域,再到用于工业及城市建设用地 的时间较短,软州港临海园区和防城港企沙工业园 填海造地工程由吹砂填海完成,然后进行地基处 理[8-9],之后直接用于相应的工程设施建设。3)填海 造地过程中填海层对下伏地层施加的荷载重。随着 填海造陆施工工艺技术的成熟,以及对土地使用面 积的需求,迫使填海由滩涂逐渐向浅海延伸,填海层 的厚度大幅增加,因此,填海层对下伏地层的荷载也 大幅增加,其中钦州大榄坪至保税港区铁路支线的 吹填工程,吹填深度深达十几米。与海积软土地质 形成的自然演变过程相比,填海造地对海积软土赋 存环境的扰动极其剧烈。海积软土与其形成的自然 地质环境在填海造地之前处于相对稳定的动态平衡 状态,经过填海造地的剧烈扰动之后,海积软土的赋 存状态迅速地发生变化,并与环境达到一种新的动 态平衡状态。

海积软土具有高含水量、高压缩性、低抗剪强度 的特点。已有学者对海积软土的抗剪强度进行了研 究,并取得了一些成果<sup>[10-14]</sup>。填海造地工程对海积 软土的赋存环境造成了极大的扰动,随着赋存环境 的变化,作为海积软土力学性状之一的抗剪强度也 随之发生改变,但尚未见到关于填海作用引起的海 积软土的赋存环境变化对海积软土的抗剪强度影响 研究的报道。

### 1 填海场地所取扰动土样的基本物理 性质

填海场地所取扰动土样基本物理性质见表1。

| 表 1 海积软土物理性质                                                |             |          |      |      |          |          |  |  |
|-------------------------------------------------------------|-------------|----------|------|------|----------|----------|--|--|
| Table 1         The physical properties of marine soft soil |             |          |      |      |          |          |  |  |
| 地点                                                          | 天然含<br>水率/% | 土粒<br>比重 | 塑限/% | 液限/% | 塑性<br>指数 | 液性<br>指数 |  |  |
| 钦州                                                          | 52.57       | 2.70     | 20.0 | 42.5 | 22.5     | 1.45     |  |  |
| 防城港                                                         | 65.07       | 2.69     | 25.3 | 49.2 | 23.9     | 1.67     |  |  |

采用筛分法和静水沉降法中的密度计法综合测 定软州港临海园区和防城港企沙工业园填海场地海 积软土的颗粒级配,密度计法测试试样中加入分散 剂为4%的六偏磷酸钠,颗粒级配试验分析结果如 图1所示。



钦州港临海园区海积软土样本中粒径小于 0.075 mm 的细粒土含量达到 80.55%,粒径小于 0.005 mm 的粘粒含量达到 43.69%。防城港企沙 工业园海积软土样本中粒径小于 0.075 mm 的细粒

量达到 33.3%。
2 "印记"填海作用下环境要素变化"痕迹"的人工软土土样的制取

土含量达到 82.2%, 粒径小于 0.005 mm 的粘粒含

#### 2.1 试验方案

人工软土土样赋存环境要素变化"痕迹"的"印

记"通过机制模拟装置"一种土的浸泡荷载联动装置<sup>115</sup>"来实现。填海层对海积软土层的附加荷载应 力采用 80、130、180 kPa 共 3 种荷载等级工况进行 加载模拟;水力联系变化通过"一种土的浸泡荷载联 动装置"四周侧壁密布细孔进行模拟;水化学场变化 通过改变浸泡液的化学组分来进行模拟。填海前海 积软土与海水直接相接处,海积软土孔隙水的游离

态离子化学组分与海水的游离态离子化学组分相 同,浓度也一样。因此,可以用海水的游离态离子化 学组分及其浓度作为填海前海积软土孔隙水的游离 态离子化学组分及其浓度的初始情况。软州港临海 园区和防城港企沙工业园区填海区域的海水离子组 分见表 2。

表 2 填海区海水主要化学成分

| Table 2         Chemical composition of seawater in coastal reclamation distric |
|---------------------------------------------------------------------------------|
|---------------------------------------------------------------------------------|

| 地点  | $Na^+/(g \cdot L^{-1})$ | $\mathrm{K}^{+}/(\mathrm{g} \bullet \mathrm{L}^{-1})$ | $\operatorname{Ca}^{2+}/(g \cdot L^{-1})$ | $Mg^{2+}/(g \boldsymbol{\cdot} L^{-1})$ | $\mathrm{Al}^{3+}/(g \boldsymbol{\cdot} L^{-1})$ | $Fe^{2+}$ 或 $Fe^{3+}/(g \cdot L^{-1})$ | pH 值 |
|-----|-------------------------|-------------------------------------------------------|-------------------------------------------|-----------------------------------------|--------------------------------------------------|----------------------------------------|------|
| 钦州  | 5.285                   | 0.356                                                 | 0.235                                     | 0.236                                   | _                                                |                                        | 7.67 |
| 防城港 | 10.26                   | 0.401                                                 | 0.443                                     | 1.25                                    | _                                                | —                                      | 7.58 |
|     |                         |                                                       |                                           |                                         |                                                  |                                        |      |

注:游离态的 Fe<sup>3+</sup>或 Fe<sup>2+</sup>、Al<sup>3+</sup>离子成分含量接近零。

试验主要对海水中的 Ca<sup>2+</sup> 和 Mg<sup>2+</sup> 离子含量对 海积软土性状的影响进行研究。已有研究<sup>[16-17]</sup> 表 明,Ca<sup>2+</sup> 和 Mg<sup>2+</sup>的溶解度较大。作为工业用地,尤 其是化工业用地的填海造地区域,有可能出现大浓 度 Ca<sup>2+</sup> 和 Mg<sup>2+</sup>的情况。相对于 Ca<sup>2+</sup> 和 Mg<sup>2+</sup>的溶 解度,海水中 Ca<sup>2+</sup> 和 Mg<sup>2+</sup> 的含量很小。在实验过 程中采用较大的级差,即以填海区的海水中 Ca<sup>2+</sup> 和 Mg<sup>2+</sup>的浓度为基准,以海水中 Ca<sup>2+</sup> 和 Mg<sup>2+</sup>浓度的 10 倍和 100 倍作为浸泡液。填海区海积软土浸泡 液方案如表 3 所示。

表 3 填海区海积软土浸泡液方案 Table 3 Soak liquid of marine soft soil in coastal reclamation district

| 地点  | 工况   | 溶剂      | 溶质       | $\operatorname{Ca}^{2+}/(g \bullet L^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $Mg^{2+}/(g \boldsymbol{\cdot} L^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $Na^+/(g \cdot L^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\mathrm{K}^{+}/(\mathrm{g} \boldsymbol{\cdot} \mathrm{L}^{-1})$                                                                                                                          |
|-----|------|---------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | 工况 1 | 海水(钦州)  | 未加       | $\omega_{1\mathfrak{H}} = \omega_{\mathfrak{H}\mathfrak{H}\mathfrak{H}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\omega_{1\notin} = \omega_{x \oplus i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\omega_{1}$ + $\omega_{t}$ + $\omega_{t$ | $\omega_{1\oplus} = \omega_{{\rm train}}$                                                                                                                                                 |
|     | 工况 2 | 海水(钦州)  | $CaCl_2$ | $\omega_{2\mathfrak{H}} = 10 \omega_{\mathfrak{H}\mathfrak{H}\mathfrak{H}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\omega_{2}$ = $\omega_{x}$ #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\omega_{2\mathfrak{H}} = \omega_{\mathfrak{H}\mathfrak{H}\mathfrak{H}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\omega_{2}$ # $=\omega_{x}$ ##                                                                                                                                                           |
| 钦州  | 工况 3 | 海水(钦州)  | $CaCl_2$ | $ω_3$ = 100 $ω$ transformed as a second strain of the second strain of | $\omega_{3} \in \omega_{i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\omega_{3}$ m = $\omega_{xa}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\omega_{3\oplus} = \omega_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{3}}}}}}}\oplus \oplus $ |
|     | 工况 4 | 海水(钦州)  | $MgCl_2$ | $\omega_{4}$ 钙 $=\omega_{x}$ 海钙                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\omega_{4}$ $\equiv 10 \omega_{\text{transf}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\omega_{4}$ + $\omega_{\chi_{B}}$ + $\omega_{\chi_{B}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\omega_{4}$ # = $\omega_{\chi}$ ##                                                                                                                                                       |
|     | 工况 5 | 海水(钦州)  | $MgCl_2$ | $\omega_{5\mathfrak{H}} = \omega_{\mathfrak{H}\mathfrak{H}\mathfrak{H}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\omega_{5}$ = 100 $\omega_{\text{trans}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\omega_{5}$ m = $\omega_{\text{trans}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\omega_{5\oplus} = \omega_{\text{transf}}$                                                                                                                                               |
|     | 工况 6 | 海水(防城港) | 未加       | $\omega_{6\mathfrak{H}} = \omega_{\mathrm{bb}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\omega_{6}$ = $\omega_{b}$ by the second seco | $\omega_{6}$ = $\omega_{b}$ by $\omega_{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ω_{6}$ = $ω_{b}$ b β                                                                                                                                                                     |
| 防城港 | 工况 7 | 海水(防城港) | $CaCl_2$ | ω7 $ = 10 ω $ b $ω$ b $ = 10 ω$ b $ = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\omega_{7}$ = $\omega_{b}$ by the second seco | $\omega_{7}$ m = $\omega_{\text{bb}}$ m m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\omega_{7\oplus} = \omega_{bb}$                                                                                                                                                          |
|     | 工况 8 | 海水(防城港) | $CaCl_2$ | $\omega_{8\mathfrak{H}} = 100 \omega_{\mathrm{bb}\mathfrak{H}\mathfrak{H}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\omega_{8}$ = $\omega_{b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\omega_{8\dot{m}} = \omega_{\ddot{m}\ddot{p}\dot{p}\dot{m}\dot{p}\dot{m}\dot{p}\dot{m}\dot{p}\dot{m}\dot{p}\dot{p}\dot{m}\dot{p}\dot{p}\dot{p}\dot{p}\dot{p}\dot{p}\dot{p}\dot{p}\dot{p}p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\omega_{8}$ # = $\omega_{b}$ ##                                                                                                                                                          |

填海区浸泡荷载联动试验的加载荷载为80、 130、180 kPa 共3种工况,浸泡液为表3所示8种工况;浸泡荷载联动试验制备土样工况组合,钦州为 15种工况组合,防城港为9种工况组合,共24种工 况组合。

#### 2.2 试验步骤

浸泡加载过程如图2所示。

1)容器采用不锈钢容器,并在不锈钢的内壁刷 一层防腐漆。刚性土模采用不锈钢制造,并在土模 上刷一层防腐漆。刷防腐漆是为了防止容器和土模 在浸泡液的作用下出现腐蚀。

2)按方案要求配置好相应的浸泡溶液。

3) 在刚性土模内侧壁垫一层透水土工布膜,目



图 2 土样浸泡加载联动试验

Fig. 2 The soaking-load experiments of soil samples

的是为了防止软土在加载的过程中从刚性土模的侧 壁细孔挤出。

4)将填海场地所取扰动土样装入刚性土模,将

土模置于容器中进行初始加载(30 kPa),倒入准备 好的浸泡溶液,浸泡液须淹没整个土模。

5)加载过程中同时按要求记录百分表的读数, 以监测土模内土样的竖向位移变形。

6)待土样竖向变形稳定(稳定标准为竖向变形 速率≪0.005 mm/d)后施加下一级荷载,每级荷载 为 25 kPa,直到最后一级荷载值。加载方案如表 4 所示。

表 4 浸泡荷载联动制样加载方案 Table 4 Loading scheme of the soaking-load experiments of soil samples

| 荷载/ kPa | 加载方案                                                     |
|---------|----------------------------------------------------------|
| 80      | 30 kPa→55 kPa→80 kPa                                     |
| 130     | 30 kPa→55 kPa→80 kPa→105 kPa→130 kPa                     |
| 180     | 30 kPa→55 kPa→80 kPa→105 kPa→<br>130 kPa→155 kPa→180 kPa |

7)模拟荷载工况为180 kPa完成最后一级荷载 加载,在最后一级荷载(180 kPa)作用下竖向变形达 到稳定要求之后,再继续浸泡15 d,让浸泡液中的离 子与土样中的离子进行充分交换。整个制样过程约 需3个月时间。荷载工况为80 kPa和130 kPa的试 样在完成荷载加载后,在最终的荷载加载作用下持 续浸泡,保持浸泡时间与荷载工况为180 kPa的浸 泡荷载联动制样时间相同,都为约3个月。

8)整个制样过程当中,为了弥补蒸发导致的容 器内溶液减少,进而引起离子成分的浓度变化,每天 定时监测水位变化,通过补充去离子水平衡蒸发造 成的影响。"一种土的浸泡荷载联动装置"还可以进 一步进行优化,对容器进行密封处理可以解决蒸发 问题。由于制造工艺比较复杂,试验未对容器进行 密封处理,而是采用通过定时补充去离子水的方式 来解决这个问题。

9)整个制样过程完成之后,即得到"印记"有不同赋存环境要素的人工土样,可用于后续物理力学性质试验(抗剪强度、固结试验、蠕变试验、渗透试验、离子组分的测定等)和细观结构试验(压汞实验、扫描电镜等),以研究填海作用下环境要素扰动对物理力学性质和细观结构试验数据研究填海作用下环境要素扰动对物理力学性质和细观结构影响机理。

对制得的人工土样进行后续物理力学性质试验 和细观结构试验的取样及其编号如图 3。抗剪强度 试验仅为后续试验的一部分。



图 3 浸泡荷载联动试验所得人工土样 Fig. 3 Soil samples obtained through soaking-load experiments

#### 3 人工土样的含水率和孔隙比

软州港临海园区和防城港企沙工业园区填海场 地所取扰动土样在不同工况条件下通过浸泡荷载联 动试验获得的人工土样的含水率ω和孔隙比 e 见表 5 和表 6。

表 5 人工土样含水率

Table 5 Moisture content of artificial soft soil samples

|     |      | 含水率 ω/ % |           |           |  |  |
|-----|------|----------|-----------|-----------|--|--|
| 地点  | 浸泡溶液 | 加载荷      | 加载荷       | 加载荷       |  |  |
|     |      | 载 80 kPa | 载 130 kPa | 载 180 kPa |  |  |
|     | 工况 1 | 41.6     | 36.5      | 28.9      |  |  |
|     | 工况 2 | 34.6     | 34.7      | 35.0      |  |  |
| 钦州  | 工况 3 | 33.3     | 30.3      | 29.1      |  |  |
|     | 工况 4 | 34.8     | 33.5      | 33.2      |  |  |
|     | 工况 5 | 27.7     | 25.8      | 24.3      |  |  |
|     | 工况 6 | 50.54    | 47.83     | 45.20     |  |  |
| 防城港 | 工况 7 | 49.25    | 47.06     | 44.62     |  |  |
|     | 工况 8 | 46.37    | 42.94     | 41.01     |  |  |

表 6 人工土样孔隙比

Table 6 The void ratio of artificial soft soil samples

|     |      | 孔隙比 e    |           |           |  |  |  |
|-----|------|----------|-----------|-----------|--|--|--|
| 地点  | 浸泡溶液 | 加载荷      | 加载荷       | 加载荷       |  |  |  |
|     |      | 载 80 kPa | 载 130 kPa | 载 180 kPa |  |  |  |
|     | 工况 1 | 1.10     | 1.00      | 0.85      |  |  |  |
|     | 工况 2 | 0.96     | 0.95      | 0.94      |  |  |  |
| 钦州  | 工况 3 | 0.90     | 0.83      | 0.77      |  |  |  |
|     | 工况 4 | 0.95     | 0.94      | 0.89      |  |  |  |
|     | 工况 5 | 0.80     | 0.77      | 0.72      |  |  |  |
|     | 工况 6 | 1.47     | 1.38      | 1.31      |  |  |  |
| 防城港 | 工况 7 | 1.43     | 1.36      | 1.29      |  |  |  |
|     | 工况 8 | 1.33     | 1.24      | 1.19      |  |  |  |

土样的孔隙比 e 随附加荷载应力的变化规律如 图 4 所示。由图 4 可知,在同一浸泡液工况条件下, 人工土样的孔隙比 e 均随附加荷载应力的增加而减 少。其原因是,在附加荷载应力的作用下发生了压 缩变形,从而孔隙比减小。





with the additional load stress of coastal reclamation layer

软州土样浸泡荷载联动试验的工况 1、工况 2 和工况 3 是浸泡液离子组分中的 Ca<sup>2+</sup>离子浓度发 生了变化,其他离子浓度未变;工况 1、工况 4 和工 况 5 是浸泡液离子组分中的 Mg<sup>2+</sup>离子浓度发生了 变化,其他离子浓度未变;防城港土样浸泡荷载联动 试验的工况 6、工况 7 和工况 8 是的浸泡液离子组分 中的 Ca<sup>2+</sup>离子浓度发生了变化,其他离子浓度未 变。人工土样的孔隙比 *e* 随浸泡液中的 Ca<sup>2+</sup>离子与 Mg<sup>2+</sup>离子浓度的变化规律如图 5 所示。





由图 5 可知,在附加荷载应力相同的情况下, 除钦州土样在 180 kPa 的情况下外,人工土样的孔 隙比 e 随浸泡液 Ca<sup>2+</sup>离子与 Mg<sup>2+</sup>离子浓度的增 加略有减少,其原因可能是一部分孔隙由于 Ca<sup>2+</sup> 离子与 Mg<sup>2+</sup>离子的沉淀作用形成的胶结物质填充 所致。

只有钦州土样在 180 kPa 附加荷载应力下出现 不一致的情况,以 Ca<sup>2+</sup>成分为变化量的浸泡液工况 分别为工况 1、工况 2 和工况 3,孔隙比分别为 0.85、 0.94、0.77;以 Mg<sup>2+</sup>成分为变化量的浸泡液工况分 别为工况 1、工况 4 和工况 5,孔隙比分别为 0.85、 0.89、0.72。采用"一种土的浸泡荷载联动装置"制 样试验是采用同一批土样进行平行试验制样,存在 一定的离散差异性,从数据上看,这种差异也较小, 由土样的离散差异性引起的可能性较大。

## 4 土样直接剪切快剪试验及其结果 分析

根据《土工试验方法标准》(GB/T 50123— 1999),采用南京土壤仪器厂生产的 ZJ 型应变控制 式直剪仪对钦州港临海园区和防城港企沙工业园区 人工土样进行快剪试验。直剪试样的直径为 61.8 mm,高为 20 mm。钦州和防城港软土在不同工况 条件下,通过浸泡荷载联动装置获得的人工制备土 样的黏聚力 c 如表 7、图 6 和图 7 所示。

|         | 表 7 人工土样黏聚力                                    |
|---------|------------------------------------------------|
| Table 7 | Cohesive force of artificial soft soil samples |

|     |      | 黏聚力 c/kPa      |                 |                 |  |  |  |
|-----|------|----------------|-----------------|-----------------|--|--|--|
| 地点  | 浸泡溶液 | 加载荷载<br>80 kPa | 加载荷载<br>130 kPa | 加载荷载<br>180 kPa |  |  |  |
|     | 工况 1 | 6.33           | 8.59            | 21.70           |  |  |  |
|     | 工况 2 | 7.36           | 11.27           | 17.04           |  |  |  |
| 钦州  | 工况 3 | 13.15          | 18.78           | 22.10           |  |  |  |
|     | 工况 4 | 7.21           | 9.82            | 16.36           |  |  |  |
|     | 工况 5 | 10.07          | 15.08           | 19.97           |  |  |  |
|     | 工况 6 | 7.5            | 12.34           | 18.72           |  |  |  |
| 防城港 | 工况 7 | 9.33           | 13.11           | 19.70           |  |  |  |
|     | 工况 8 | 12.52          | 15.04           | 20.77           |  |  |  |

人工制备土样的黏聚力 c 随附加荷载应力的变 化规律如图 6 所示。

由表 7 和图 6 可知,在同一浸泡液工况条件下, 人工土样的粘聚力 c 均随附加荷载应力的增加而增 大。粘聚力 c 增长的原因,是随着附加荷载应力的





增加,土样的压缩变形进一步增加,土样的孔隙比和 含水率进一步减少,从而造成粘聚力 c 进一步增大。

钦州土样浸泡荷载联动试验的工况 1、工况 2 和工况 3 是浸泡液离子组分中的 Ca<sup>2+</sup>离子浓度发 生了变化,其他离子浓度未变;工况 1、工况 4 和工 况 5 是浸泡液离子组分中的 Mg<sup>2+</sup>离子浓度发生了 变化,其他离子浓度未变;防城港土样浸泡荷载联动 试验的工况 6、工况 7 和工况 8 是的浸泡液离子组分 中的 Ca<sup>2+</sup>离子浓度发生了变化,其他离子浓度未 变。人工土样的黏聚力 c,随浸泡液中的 Ca<sup>2+</sup>离子 与 Mg<sup>2+</sup>离子浓度的变化规律如图 7 所示。

由图 7 可知,在附加荷载应力相同的情况下,除 钦州土样在 180 kPa 情况下,人工土样的粘聚力 c 随浸泡液 Ca<sup>2+</sup>离子与 Mg<sup>2+</sup>离子浓度的增加而增 大。推测其原因,可能是一部分孔隙由于 Ca<sup>2+</sup>离子 与 Mg<sup>2+</sup>离子的沉淀作用而形成了胶结物质,新增的 这一部分胶结物使得土颗粒之间的胶结连接加强, 进而使得土样的粘聚力 c 增大。在 180 kPa 的情况 下,软州土样出现了例外情况,是加载过程出现了误 差导致,后面的防城港的浸泡加载试验,注意了这一 问题,保证了加载的准确精度,未出现相应的偏差。

由表 7 数据可知,工况 2 与工况 4 相比,浸泡液 工况 2 的 Ca<sup>2+</sup>离子变化情况是在海水的基础上增 加到原来的 10 倍,浸泡液工况 4 的 Mg<sup>2+</sup>离子变化 情况是在海水的基础上增加到原来的 10 倍,在荷载 相同的情况下,Ca<sup>2+</sup>离子变化对粘聚力 c 变化影响 均大于 Mg<sup>2+</sup>离子变化对粘聚力 c 变化影响。工况 3 与工况 5 相比,浸泡液工况 3 的 Ca<sup>2+</sup>离子变化情 况是在海水的基础上增加到原来的 100 倍,浸泡液 工况 5 的 Mg<sup>2+</sup>离子变化情况是在海水的基础上增 加到原来的 100 倍,在荷载相同的情况下,也出现了 Ca<sup>2+</sup>离子变化对粘聚力 c 变化影响均大于 Mg<sup>2+</sup>离



图 7 人工土样粘聚力 c 随浸泡液离子浓度的变化 Fig. 7 Change of cohesive force of artificial soft soil samples along with the ionic concentration of soak liquid

子变化对粘聚力 c 变化影响。仅从地基处理加固的 角度来看,如果采用化学加固的方法,对粘聚力 c 的 影响,Ca<sup>2+</sup>离子比 Mg<sup>2+</sup>离子的效果要好。

土的内摩擦角  $\varphi$  试验结果如表 8、图 8 和图 9 所示。

|     |      | 内摩擦角 <i>q</i> /(°) |                 |         |  |  |
|-----|------|--------------------|-----------------|---------|--|--|
| 地点  | 浸泡溶液 | 加载荷载               | 加载荷载            | 加载荷载    |  |  |
|     |      | 80 kPa             | 130 <b>k</b> Pa | 180 kPa |  |  |
|     | 工况 1 | 2.12               | 2.81            | 3.28    |  |  |
|     | 工况 2 | 2.65               | 2.73            | 3.35    |  |  |
| 钦州  | 工况 3 | 4.7                | 4.39            | 4.29    |  |  |
|     | 工况 4 | 2.94               | 3.32            | 3.71    |  |  |
|     | 工况 5 | 1.74               | 2.39            | 2.64    |  |  |
|     | 工况 6 | 3.66               | 3.83            | 4.57    |  |  |
| 防城港 | 工况 7 | 3.60               | 4.00            | 4.86    |  |  |
|     | 工况 8 | 4.06               | 4.92            | 5.48    |  |  |

表 8 人工土样内摩擦角 Table 8 Internal friction angle of artificial soft soil samples



由表 8、图 8 可知,除工况 3 在同一浸泡液工况 条件下外,人工土样的内摩擦角 φ 均随附加荷载应 力的增加而增大。推测其内摩擦角 φ 增大的原因 是,随着附加荷载应力的增加,土样的压缩变形进一 步增加,土样的孔隙比和含水率进一步减少,其内摩 擦角 φ 进一步增大。

工况 3 的内摩擦角 φ 值分别为 4.7、4.39、 4.29,没有明显的变小的趋势,推断其原因,可能是 由于附加荷载应力和浸泡液中的 Ca<sup>2+</sup> 成分相互耦 合影响的关系,附加荷载应力的压密作用下孔隙比 减少(孔隙比分别为 0.90、0.83、0.77),渗透系数减 少,浸泡液中的 Ca<sup>2+</sup> 成分对土样的影响减弱。

人工土样的内摩擦角  $\varphi$ ,随浸泡液中的 Ca<sup>2+</sup>离子与 Mg<sup>2+</sup>离子浓度的变化规律,如图 9 所示。

由图 9 可知,在附加荷载应力相同的情况下,人 工土样的内摩擦角 φ 随浸泡液 Ca<sup>2+</sup>离子浓度的增 加而略有增大,而随浸泡液 Mg<sup>2+</sup>离子浓度的增加反 而略有减少,其原因尚需进一步的实验探明。仅从 地基处理加固的角度来看,如果采用化学加固的方 法,在增加抗剪强度时对内摩擦角 φ 的影响方面, Ca<sup>2+</sup>离子比 Mg<sup>2+</sup>离子的效果要好。



图 9 人工土样内摩擦角  $\varphi$  随浸泡液离子浓度的变化 Fig. 9 Change of internal friction angle  $\varphi$  of artificial soft soil samples along with the ionic concentration of soak liquid

综合对比 Ca<sup>2+</sup>离子与 Mg<sup>2+</sup>离子对粘聚力 *c* 和 内摩擦角 *q* 的影响,在防城港的浸泡实验过程中未 进行镁离子变化影响的浸泡实验。

## 5 赋存环境要素对抗剪强度指标的耦 合分析

赋存环境要素对黏聚力 c 的耦合分析,如表 9 所示。

Table 9 Coupling analysis of impact on cohesive force c of artificial soft soil samples among environmental elements

|    | 环境要素   |      | -<1 124 1     | 环境要素   |      | 环境                        |               | 竟要素变化量                                                                                                                       | 黏聚力 c                      |                                                |
|----|--------|------|---------------|--------|------|---------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------|
| 地点 | 荷载/kPa | 浸泡液  | -貓聚力<br>c/kPa | 荷载/kPa | 浸泡液  | <sup>-</sup> 貊浆刀<br>c/kPa | 荷载变<br>化量/kPa | 浸泡液变化量                                                                                                                       | 变化量Δ <sub>c</sub> /<br>kPa | 比较分析                                           |
|    |        |      |               | 80     | 工况 3 | 13.15                     | 0             | $\Delta_{\mathrm{Ca}^{2+}} = \omega_{3} \mathfrak{F} - \omega_{1} \mathfrak{F}$<br>= 99 $\omega_{\mathrm{S}}$ $\mathfrak{F}$ | 6.82                       | 6.82+15.37=22.19 kPa 由浸泡液<br>变化单独引起粘聚力 c 增大量与由 |
| 钦州 | 80     | 工况 1 | 6.33          | 180    | 工况 1 | 21.7                      | 100           | 0                                                                                                                            | 15.37                      | 荷载变化单独引起粘聚力 c 增大量<br>之和为 22.19 kPa,大于由浸泡液和     |
|    |        |      |               | 180    | 工况 3 | 22.1                      | 100           | $\Delta_{Ca}^{2+} = \omega_{3} + \omega_{1} + \omega_{1}$<br>= 99 $\omega_{transport}$                                       | 15.77                      | 荷载同时变化共同一起引起的粘聚<br>力 <i>c</i> 增大量 15.77 kPa。   |

|     |        |      |                            |              |              |                           | 续表            | £ 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |                           |
|-----|--------|------|----------------------------|--------------|--------------|---------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------|
| 地点  | 环境要素   |      | 环境要素                       |              | -            | 环境要素变化量                   |               | 黏聚力c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |                           |
|     | 荷载/kPa | 浸泡液  | <sup>-</sup> 貓聚力<br>c /kPa | 荷载/kPa       | 浸泡液          | <sup>一</sup> 貓聚力<br>c/kPa | 荷载变<br>化量/kPa | 浸泡液变化量                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 变化量 Δ <sub>c</sub> /<br>kPa | 比较分析                      |
| 钦州  | 80     | 工况 1 | 6.33                       | 80           | 工况 5         | 10.07                     | 0             | $\Delta_{\rm Mg^{2+}} = \omega_{3 \notin} - \omega_{1 \notin}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.74                        | 3.74+15.37=19.11 kPa 由浸泡液 |
|     |        |      |                            |              |              |                           |               | $=99\omega_{ij}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             | 变化单独引起粘聚力 c 增大量与由         |
|     |        |      |                            | 3 180<br>180 | 工况 1<br>工况 5 | 21.7<br>19.97             | 100<br>100    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15.37                       | 荷载变化单独引起粘聚力。增大量           |
|     |        |      |                            |              |              |                           |               | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             | 之和为 19.11 kPa,大于由浸泡液和     |
|     |        |      |                            |              |              |                           |               | $\Delta_{\mathrm{Mg}^{2+}} = \omega_{3} \notin -\omega_{1} \notin$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13.64                       | 荷载同时变化共同一起引起的粘聚           |
|     |        |      |                            |              |              |                           |               | =99 <i>w</i> 钦海镁                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             | 力 c 增大量 13.64 kPa。        |
| 防城港 | 80     | 工况 6 | 6 7.5                      | 80           | 工况 8         | 12.52                     | 0             | $\Delta_{\mathrm{Ca}^{2+}} = \omega_{8\mathfrak{H}} - \omega_{6\mathfrak{H}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.02                        | 5.02+11.22=16.24kPa 由浸泡液  |
|     |        |      |                            |              |              |                           |               | =99 <i>w</i> 防海钙                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             | 变化单独引起粘聚力 c 增大量与由         |
|     |        |      |                            | 5 180        | 工况 6         | 18.72                     | 100           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.22                       | 荷载变化单独引起粘聚力。增大量           |
|     |        |      |                            |              |              |                           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             | 之和为16.24 kPa,大于由浸泡液和      |
|     |        |      |                            | 180          | 工况 8         | 20.77                     | 100           | $\Delta_{\mathrm{Ca}^{2+}} = \omega_8$ 5 $- \omega_6$ 5 $\omega_6$ 5 \omega_6 5 $\omega_6$ 5 $\omega_6$ 5 $\omega_6$ 5 $\omega_6$ 5 \omega_6 | 13.27                       | 荷载同时变化共同一起引起的粘聚           |
|     |        |      |                            |              |              |                           |               | $=99\omega_{bat}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             | 力 c 增大量 13.27 kPa。        |

由表9可知:

1)填海层附加荷载应力与浸泡液离子浓度同时 变化对黏聚力 c 变化的总效应并不简单等于填海层 附加荷载应力单独变化引起的效应与浸泡液离子浓 度单独变化引起的效应之和,总效应小于填海层附 加荷载应力单独变化引起的效应与浸泡液离子浓度 单独变化引起的效应之和。

2)环境要素填海层附加荷载应力与浸泡液离子 浓度对黏聚力 c 的影响存在某种相互耦合的关系。 相互耦合的机理尚不清楚,须进一步试验研究探明。 赋存环境要素对内摩擦角 φ 的耦合分析,如表

10 所示。

| 表 10 | 不同环境要素之 | 间对人工土样的 | 内摩擦角的影响的耦合分析 | 折表 |
|------|---------|---------|--------------|----|
|------|---------|---------|--------------|----|

Table 10 Coupling analysis of impact on internal friction angle of artificial soft soil samples among environmental elements

|     | 环境要素   |      | 内摩          | 环境     | 要素 内摩    |                  | 环境要素变化量       |                                                                                                                                                                                | 内摩擦角                                            |                                                                                                                                                                                                                                            |
|-----|--------|------|-------------|--------|----------|------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 地点  | 荷载/kPa | 浸泡液  | 擦角<br>φ/(°) | 荷载/kPa | 浸泡液      | -<br>擦角<br>φ/(°) | 荷载变<br>化量/kPa | 浸泡液变化量                                                                                                                                                                         | tanφ<br>变化量<br>Δtanφ                            | 比较分析                                                                                                                                                                                                                                       |
| 钦州  | 80     | 工况 1 | 2.12        | 80     | 工况 3     | 4.7              | 0             | $\Delta_{Ca^{2+}} = \omega_{3} \mathfrak{G} - \omega_{1} \mathfrak{G}$<br>= 99 $\omega$ tää $\mathfrak{G}$                                                                     | 0.045                                           | 0.045+0.02=0.065 由浸泡液变<br>单独引起内摩擦角 tan φ变化<br>Λtan φ与由荷载变化单独引起孔                                                                                                                                                                            |
|     |        |      |             | 180    | 工况1 3.28 | 100              | 0             | 0.02                                                                                                                                                                           | 摩擦角 $\tan \varphi$ 变化量 $\Delta \tan \varphi$ 之和 |                                                                                                                                                                                                                                            |
|     |        |      |             | 180    | 工况 3     | 4.29             | 100           | $\Delta_{\mathrm{Ca}}^{2+} = \omega_{3\mathfrak{H}} - \omega_{1\mathfrak{H}}$<br>=99 $\omega$ that                                                                             | 0.038                                           | 0.065。由浸泡液和荷载同时变化力<br>同一起引起的内摩擦角 tan $\varphi$ 变化量<br>$\Delta$ tan $\varphi$ 为 0.038。                                                                                                                                                      |
| 钦州  | 80     | 工况 1 | 1 2.12      | 80     | 工况 5     | 1.74             | 0             | $\Delta_{\mathrm{Mg}^{2+}} = \omega_{5 \mathrm{\r{k}}} - \omega_{1 \mathrm{\r{k}}}$ $= 99 \omega_{\mathrm{\r{k}} \mathrm{\r{k}} \mathrm{\r{k}} \mathrm{\r{k}} \mathrm{\r{k}}}$ | -0.007                                          | 荷载同为 80 kPa 的情况下,浸泡液<br>工况1到工况5,镁离子的浓度增大<br>到原来的100倍,内摩擦角,反而还<br>略有减少。                                                                                                                                                                     |
|     |        |      |             | 180    | 工况 1     | 3.28             | 100           | 0                                                                                                                                                                              | 0.02                                            |                                                                                                                                                                                                                                            |
|     |        |      |             | 180    | 工况 5     | 2.64             | 100           | $\Delta_{\mathrm{Mg}^{2+}} = \omega_{5 \notin} - \omega_{1 \notin}$<br>=99 $\omega_{\mathrm{traj}}$                                                                            | 0.009                                           |                                                                                                                                                                                                                                            |
| 防城港 | 80     | 工况 6 | 6 1.47      | 80     | 工况 8     | 4.06             | 0             | $\Delta_{\mathrm{Ca}^{2+}} = \omega_{8\mathfrak{H}} - \omega_{6\mathfrak{H}}$<br>=99 $\omega$ bja $\mathfrak{H}$                                                               | 0.007                                           | 0.007+0.016=0.023 由浸泡液变化<br>单独引起内摩擦角 tan $\varphi$ 变化量<br>$\Delta$ tan $\varphi$ 与由荷载变化单独引起孔内<br>摩擦角 tan $\varphi$ 变化量 $\Delta$ tan $\varphi$ 之和为<br>0.023。由浸泡液和荷载同时变化力<br>同一起引起的内摩擦角 tan $\varphi$ 变化量<br>$\Delta$ tan $\varphi$ 为 0.032。 |
|     |        |      |             | 7 180  | 工况 6     | 4.57             | 100           | 0                                                                                                                                                                              | 0.016                                           |                                                                                                                                                                                                                                            |
|     |        |      | 180 ፲       |        | 工况 8     | 5.48             | 100           | $\Delta_{	ext{Ca}^{2+}} = \omega_8$ 钙一 $\omega_6$ 钙<br>= 99 $\omega$ 防海钙                                                                                                       | 0.032                                           |                                                                                                                                                                                                                                            |

由表 10 可知:填海层附加荷载应力与浸泡液离 子浓度同时变化,对内摩擦角 φ变化的总效应,并没 有出现一致大于或者小于填海层附加荷载应力单独 变化引起的效应与浸泡液离子浓度单独变化引起的 效应之和的现象,由此初步推测,这两种环境要素对 土样的内摩擦角的影响相互之间的影响较弱,对内 摩擦角 φ的耦合效应较小,其试验结果主要受试验 精度控制。

## 6 填海作用下环境要素变化对海积软 土抗剪强度影响的机理

海积软土的赋存环境在填海作用下将发生变 化,由室内模拟试验结果可知,土样的抗剪强度受到 赋存环境要素变化的影响。当附加荷载应力(填海 场地由填海层的自重荷载引起的应力)增大时,土样 发生压缩变形,孔隙比减小,土样的抗剪强度增大, 粘聚力 c 和内摩擦角 φ 都随之增大。当浸泡液的离 子组分(填海场地海积软土的孔隙液化学组分)发生 变化时,不同的离子组分发生变化,对软土抗剪强度 的效应有所不同,根据改变浸泡液中的 Ca<sup>2+</sup>离子和 Mg<sup>2+</sup>离子浓度的实验结果对比分析可知,Ca<sup>2+</sup>离子 和 Mg<sup>2+</sup>离子的浓度增大过程中,土样的胶结连接增 强,粘聚力 c 增大,但 Ca<sup>2+</sup>离子对抗剪强度的影响大 于 Mg<sup>2+</sup>离子的影响。

对抗剪强度的影响,赋存环境要素之间存在相 互耦合作用。基于室内试验模拟结果来看,附加荷 载应力与浸泡液的离子组分之间对粘聚力 c 的相互 影响作用较大,对内摩擦角 φ 的相互影响作用较小。

#### 7 结论

以钦州港临海园区和防城港企沙工业园填海场 地海积软土为研究对象,分析了填海造地对填海场 地海积软土赋存环境变化的影响,采用"一种土的浸 泡荷载联动装置"对填海场地在填海层附加荷载应 力与海积软土孔隙水化学组分发生变化时进行了人 工模拟制样,并对"印记"了赋存环境要素的人工软 土样品进行了抗剪强度室内土工试验。

 1)填海造地对填海场地海积软土的赋存环境变 化产生影响,从岩土工程地质的角度,主要有填海层 对海积软土层的附加荷载应力、水力联系变化、水化 学场变化三大赋存环境要素变化。

2)填海层对海积软土层的附加荷载应力、水力 联系变化、水化学场变化三大赋存环境要素,可采用 "一种土的浸泡荷载联动装置"进行模拟。

3)随着填海层附加荷载应力的增大,人工软土 样的粘聚力 *c* 和内摩擦角 *φ* 随之增大;随着浸泡液 不同的离子成分浓度变化,对人工软土样的抗剪强 度指标影响效果不一。试验结果显示,随着离子浓 度的增加,Ca<sup>2+</sup>比 Mg<sup>2+</sup>对抗剪强度指标的影响大。 4)填海层附加荷载应力与浸泡液离子组分双因素同时作用下,对土样的抗剪强度指标存在相互耦 合效应,其耦合效应对黏聚力 c 影响明显,对内摩擦 角 φ 影响较小。

#### 参考文献:

- [1] 葛振鹏,戴志军,谢华亮,等. 北部湾海湾岸线时空变化 特征研究[J].上海国土资源,2014,35(2):49-53.
  GE Z P, DAI Z J, XIE H L, et al. The Northern Gulf coastline of the temporal and spatial variation characteristics [J]. Shanghai Land and Resources, 2014,35(2):49-53. (in Chinese)
- [2] 孙永根,高俊国,朱晓明. 钦州保税港区填海造地工程 对海洋环境的影响[J]. 海洋科学,2012,36(12): 84-89.

SUN Y G, GAO J G, ZHU X M. Qinzhou bonded port of reclamation reclamation project on marine environment [J]. Marine Sciences, 2012, 36(12): 84-89. (in Chinese)

[3]董德信,李谊纯,陈宪云,等.大规模填海工程对软州湾 水动力环境的影响[J].广西科学,2014,21(4):357-364,369.

DONG D X, LI Y C, CHEN X Y, et al. The influence of large-scale reclamation on the hydrodynamic environment of Qinzhou Bay [J]. Guangxi Sciences, 2014, 21(4): 357-364, 369. (in Chinese)

[4] 刘汉民,周东,袁海波,等.填海区水化学场变异对细粒 土细观结构的影响[J].土木建筑与环境工程,2014,36 (Sup1):1-4,8.

LIU H M, ZHOU D, YUAN H B, et al. Effect of variation of water chemical field in reclamation area on fine structure of fine grained soil [J]. Journal of Civil, Architectural & Environmental Engineering, 2014, 36 (Sup1): 1-4,8. (in Chinese)

- [5] YI Y L, GU L Y, LIU S Y. Microstructural and mechanical properties of marine soft clay stabilized by lime-activated ground granulated blast furnace slag [J]. Applied Clay Science, 2015, 103(1): 71-76.
- [6] 欧孝夺,潘鑫,殷宪太,等. 广西北部湾人造陆域吹填土 生物固结试验研究[J]. 岩土力学,2015,36(1):28-33.
  OU X D, PAN X, YIN X T, et al. Guangxi Beibu gulf artificial reclaimed soil for land consolidation test research [J]. Rock and Soil Mechanics, 2015, 36(1): 28-33. (in Chinese)
- [7] 广西壮族自治区海洋局. 广西壮族自治区 2011 年海洋 环境质量公报[EB/OL]. (2012-05-31). http://www. gxoa. gov. cn/gxhyj \_ hyhb \_ jcgcyb/2012/05/31/ 98313eab8fdd464886b5cb40840d43f0. html The Guangxi Zhuang Autonomous Region Oceanic

Administration. The Guangxi Zhuang Autonomous Region marine environmental quality bulletin, 2011 [EB/OL]. (2012-05-31). http://www.gxoa.gov.cn/gxhyj\_hyhb\_ jcgcyb/2012/05/31/98313eab8fdd464886b5cb40840d43f0. html (in Chinese)

- [8] 刘汉民,吴恒,周东.强夯法处理吹填砂地基机理分析 及应用[J].施工技术,2012,41(Sup1):58-61.
  LIU H M, WU H, ZHOU D. Mechanism analysis and application of dynamic consolidation method in treatment of blown sand foundation [J]. Construction Technology, 2012, 41(Sup1):58-61. (in Chinese)
- [9] 胡纯龙.广西北部湾填海造陆工程地基基础及施工方法[J]. 探矿工程(岩土钻掘工程),2009,36(6):51-54.
  HU C L. The Guangxi Beibu Gulf reclamation engineering foundation and construction method [J].
  Exploration Engineering (Rock & Soil Drilling and Tunneling), 2009, 36(6): 51-54. (in Chinese)
- [10] WU C J, YE G L, ZHANG L L, et al. Depositional environment and geotechnical properties of Shanghai clay: a comparison with Ariake and Bangkok clays [J]. Bulletin of Engineering Geology and the Environment, 2015, 74(3): 717-732.
- [11] BO M W, ARULRAJAH A, SUKMAK P, et al. Mineralogy and geotechnical properties of Singapore marine clay at Changi [J]. Soils and Foundations, 2015, 55(3): 600-613.
- [12] GANESAN S, KUO M, BOLTON M. Influences on pipeline interface friction measured in direct shear tests [J]. Geotechnical Testing Journal, 2014, 37(1): 1-13.

- [13] PATINO H, SORIANO A, GONZÁLEZ J. Failure of a soft cohesive soil subjected to combined static and cyclic loading [J]. Soils and Foundations, 2013, 53 (6): 910-922.
- [14] GUO L, WANG J, CAI Y Q, et al. Undrained deformation behavior of saturated soft clay under longterm cyclic loading [J]. Soil Dynamics and Earthquake Engineering, 2013, 50(7): 28-37.
- [15] 吴恒,刘汉民,周东,等. 一种土的浸泡荷载联动装置
  [P].中国,CN103454154A,2013-12-18.
  WUH,LIUHM,ZHOUD, et al. The device of soil soaking-load linkage device [P]. Chinese patent, CN103454154A, 2013-12-18. (in Chinese)
- [16] 李栋婵. Na<sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup>//Cl<sup>-</sup>−H<sub>2</sub>O四元体系 15 ℃、35℃介稳相平衡的研究[D]. 成都:成都理工大 学,2007.

LI D C. Studies on the meta-stable equilibrium of the quaternary system Na<sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup>//Cl<sup>-</sup>H<sub>2</sub>O at 15 °C and 35 °C [D]. Chengdu: Chengdu University of Technology, 2007. (in Chinese)

- [17] 陈美珍, 余杰. MgCl<sub>2</sub>—NaCl—H<sub>2</sub>O体系的相图与盐 卤中氯化镁提取的方法[J]. 海湖盐与化工,1995,24 (5): 26-27,43.
  - CHEN M Z, YU J. Magnesium chloride extraction method in phase diagram and bittern of system MgCl<sub>2</sub>—NaCl—H<sub>2</sub>O [J]. Sea-Lake Salt and Chemical Industry,1995, 24(5): 26-27,43. (in Chinese)

(编辑 胡英奎)