doi:10.11835/j.issn.1674-4764.2018.06.010

Vol. 40 No. 6

Dec. 2018

高应力下粗砂与混凝土接触面剪切 特性影响因素试验研究

檀俊坤,郭佳奇,徐子龙,刘希亮

(河南理工大学土木学院,河南 焦作 454003)

要:利用改装自 RMT-150B 的直剪试验仪在不同法向应力下进行了含水量为 0%、8%、16%、 摘 24%的粗砂与具有4种不同粗糙度、强度混凝土基底的接触面直剪试验。试验结果表明:当法向应 力等于2 MPa时,随接触面粗糙度的增加,达到极限抗剪强度的剪切位移先增加后减小;当法向应 力大于2 MPa时,达到极限剪切强度的剪切位移基本不再随接触面粗糙度而变化;在法向应力相 同的情况下,干砂初始抗剪刚度较湿砂大。依据试验数据回归分析可知:高应力直剪条件下,粗砂 与混凝土接触面的剪应力-剪切位移关系可用双曲线模型描述。直观分析结果表明:极限抗剪强度 受法向应力影响最大,且与应力呈线性相关,其次为接触面粗糙度,含水量的影响略高于混凝土界 面强度;初始抗剪刚度随法向应力、接触面粗糙度、基底硬度的增大而增大,接触面初始剪切刚度所 受因素影响从大到小依次为法向应力、含水量、接触面粗糙度、基底硬度;颗粒相对破碎受法向应力 影响最大,其次为含水量,再次为基底硬度,接触面粗糙度影响最小,并且颗粒相对破碎随法向应力 增达而增大,随混凝土粗糙度与基底硬度的增大而减小,随含水量增加存在破碎的破碎峰值。 关键词:接触面;正交试验;极限抗剪强度;初始剪切刚度;相对破碎 中图分类号:TU753.3 文献标志码:A **文章编号:**1674-4764(2018)06-0067-09

Experimental investigation of the influential factors on the shear characteristics of the interface between coarse sand and concrete under high stress

Tan Junkun, Guo Jiaqi, Xu Zilong, Liu Xiliang

(School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454003, Henan, P. R. China)

Abstract: The direct shear apparatus amended from the RMT-150B system is adopted to conduct the direct shear test on the coarse sand with the water contents of 0%, 8%, 16% and 24%, respectively. The contact surfaces with four kinds of concrete basements with different roughness and strengths under different normal stresses are considered. The results have proved that the ultimate shearing strength under high stress increases with the normal stress. The shearing rigidity decreases with the shear displacement

收稿日期:2018-02-27

基金项目:河南省科技攻关项目(152102210318);河南省教育厅科学技术研究重点项目(13A440318)

作者简介: 檀俊坤(1989-), 男, 主要从事岩土工程研究, E-mail: tanjunkunde@126. com。

郭佳奇(通信作者),男,副教授,博士,E-mail:gjq519@163.com。

Received: 2018-02-27

Foundation item: Key Scientific and Technological Project of Henan Province(No. 152102210318); Key Project of Science and Technology Research of Henan Provincial Education Department(No. 13A440318)

Author brief: Tan Junkun(1989-), main research interest: geotechnical engineering, E-mail: tanjunkunde@126.com. Guo Jiaqi(corresponding author), associate professor, PhD, E-mail: gjq519@163.com.

development while the initial shearing rigidity decreases when the normal stress increases. The shear displacement keeps increasing as the roughness of the contact surface grows up to a normal stress of 2 MPa. The initial shearing rigidity of the dry sand with the water content of 0% is greater than that of the wet sand under the same normal stress. Regression analysis based on the experimental data shows that the displacement for the contact surface between the coarse sand and concrete under the high-stress direct shear conditions can be described via the hyperbolic model. In addition, the ultimate and initial shearing strength

conditions can be described via the hyperbolic model. In addition, the ultimate and initial shearing strength of the contact surface can be estimated through the regression parameters. It has been shown that the ultimate shearing strength is the most significantly influenced by the normal stress followed by the roughness of the contact surface, and the influence of the water content is slightly greater than the strength of the concrete interface. The relative crushing ration of particles is subjected to the significant influence from the normal stress, followed by the water content and basement hardness and the influence from the contact surface roughness is minimum. In addition, the relative crushing ratio of particles increases as the normal stress develops and decreases while the concrete roughness and basement hardness become smaller. The peak of the existing crush increased with the water content.

Keywords: contact surface; orthogonal experiment; ultimate shearing strength; initial shearing rigidity; relative breakage

为了对地下结构破损的治理和对新建地下结构 的合理类型进行有效设计,必须对地下结构与其周 围土体间相互作用接触面的剪切特性及其影响因素 进行研究,以确定不同因素对接触面剪切性质影响 程度的大小,为地下结构受力分析和变形计算提供 基础。土与结构接触面力学特性的研究是解决土与 结构相互作用问题的关键[1]。20世纪60年代以 来,诸多学者就该问题开展了大量的研究,取得了许 多极具价值的成果。Potyondy 等^[2] 通过上百组百 剪试验研究了砂土、黏土、黏性粒状土与钢材、混凝 土、木材间不同接触面的剪切力学特性。杨大方 等[3]进行了黏土与黏土、黏土与光滑及粗糙混凝土、 黏土与平行及垂直纹理木材 4 个含水量共 80 个试 样的直剪试验,研究表明,粘土与结构接触界面的 强度参数与土体含水量、接触材料类型及接触材料 粗糙度密切相关。冯大阔等[4]运用最新研制的80 t三维多功能土工试验机对粗粒土与结构接触面 在 3 种典型法向边界条件下的三维力学特性进行 了试验研究。龚辉等^[5]采用大型直剪仪,系统研究 法向应力历史对黏土-混凝土界面剪切特性的影 响。陈俊桦等[6]利用大型直剪试验仪对红黏土-混 凝土试块接触面进行直剪试验,定量分析了粗糙度 对接触面剪切破坏、变形等的影响,并探讨了粗糙 度的影响机理。Prashanth 等^[7]利用 3 种大小不同 形态相同的砂粒和两种大小相同形态不同的砂粒 与土工膜接触面进行剪切试验,并利用三维光学轮 廓仪对试验前后土工膜表面进行微观分析,研究表 明,砂土的形态对界面剪切强度有较大影响,棱角 形砂粒造成土膜表面有较深的沟痕,导致界面上的 剪切阻力增大。Aliyeh等^[8]采用均匀级配砂和混 有球形玻璃体的砂分别与土工织物接触面进行直 剪试验,试验揭示了颗粒形状对峰值和残余摩擦角 的均有影响。上述研究成果有力地推动了土与结 构接触面相互作用研究领域的进展,深化了对接触 面相互作用力学机制的认识。但上述试验研究均 是在低应力或极低应力条件下开展的,且部分研究 中接触面影响因素未进行量化,无法对其影响程度 进行定量分析。

随着深部地下工程的大量出现,使得原来针对 浅部土体进行的土与结构接触面剪切试验成果的应 用受到了挑战,迫切需要开展高应力条件下土与结 构接触面剪切特性影响因素研究。刘希亮等题开展 了建筑砂、标准砂、粉土和粘土与混凝土、金属光滑、 金属粗糙界面的剪切试验,研究了法向应力、土体性 质、基底性质及剪切速率的影响程度。郭佳奇等[10] 对饱和粗砂、干粗砂、饱和细砂、干细砂与混凝土、钢 材界面的接触面相互作用进行了正交试验研究,分 析了土体干湿状态、土性及基底性质对接触面剪切 特性的影响规律。夏红春等^[11]利用 DSR-1 型超高 压直残剪试验系统,研究了不同粗糙度条件下土-结 构接触面的剪切力学特性。现有高应力下土与结构 接触面剪切特性影响因素试验研究,未对结构硬度 (或强度)、土体含水量及粗糙度的定量影响进行系 统研究。本文利用在 RMT-150B 试验系统上专门 设计加工的高应力接触面剪切仪开展了 16 组不同 含水量粗砂与不同基底硬度、不同粗糙度混凝土接 触面的直剪试验,采用直观分析方法对接触面剪切 特性因素影响程度进行了分析。

1 试验系统及方法

1.1 试验系统

由于现有的直剪仪垂直荷载较小,难以满足试 验对法向应力的要求,笔者在现有的 RMT-150B 岩 石力学系统的基础上进行改装,重点对直剪盒及加 载帽、减阻板等配件进行了专门设计加工^[12]。改装 后的试验系统垂直荷载可达 1 000 kN、剪切荷载达 到 50 kN、剪切最远行程 20 mm,剪切盒内径为 124 mm 的钢筒,据此计算,最大法向应力可达 10 MPa 以上,可以满足试验对法向应力和剪切位移的需求。 该装置同时具有自动加载,数据实时采集、自动绘制 图表等功能,垂直方向和水平方向输出力装置均采 用液压伺服控制系统,下剪切盒与主体设备间设有 减摩的滚动体,以提高试验精度。改装后的试验系 统见图 1。

图 1 高应力直剪仪 Fig. 1 High stress direct shear apparatus

1.2 基底粗糙度与硬度

试验选取混凝土作为基底材料,用以模拟土与 结构剪切系统中结构部分的作用。混凝土基底由自 行设计带粗糙面模板的模具浇筑成型,研究使用的 棱台高度与宽度相同,角度统一为45°,棱台高度(h) 分别为0、2、3、4 mm,对于这种齿形的具有粗糙表面 混凝土基底,可使用灌砂法来确定其粗糙度(见图 2)。测定结构面粗糙度时,用毛刷将试样齿形结构 表面刷干净,将粒径为0.1 mm 的细砂缓慢平铺在 混凝土齿形结构表面,用钢板尺磨平后倒入托盘,用 100 mL 的量筒称取砂子的体积,重复进行3次,取 其平均体积v除以结构表面积s,得粗糙度r(也就 是结构面凸凹的平均高度),粗糙度测试结果见表 1。所测定粗糙度与混凝土基地的棱台高度呈正比, 为了便于表达,直接采用混凝土基底粗糙面的棱台 高度代表其粗糙度。

(a) h=0 mm
 (b) h=2 mm
 (c) h=3 mm
 (d) h=4 mm
 图 2 测定齿形结构面的粗糙度

Fig. 2 Roughness of tooth surface

表 1 齿形结构面粗糙度测试结果

Table 1 Test results of tooth surface roughness

h/mm	r/mm	h/mm	r/mm
0	0	3	0.30
2	0.17	4	0.37

浇筑 C20、C30、C40、C50 这 4 种强度混凝土基 底,混凝土拌合物配合比根据文献[13-14]确定。对 上述不同强度的混凝土基底运用回弹仪进行硬度测 定,将每个混凝土试块分 5 个测区,每个测区取 16 个测点,每个测区的 16 个回弹值去掉 3 个最大值和 3 个最小值,进而求出每个测点的平均值,根据测点 的平均值计算相应强度基底的平均回弹值。采用回 弹值直接表示基底硬度,所用 4 种强度混凝土基底 回弹值见表 2。

表 2 试验用不同强度混凝土基底回弹值

Table 2 Rebound value of concrete with different strength

混凝土强度	回弹值	混凝土强度	回弹值
C20	28.1	C40	38.1
C30	33.9	C50	41.9

1.3 试样准备与试验方法

试验所用土为粗砂(河砂),使用时先筛除粒径 大于 2 mm 的砂置于室外风干,然后放入烘干箱温 度控制 106 ℃,烘干 1 h。根据《土工试验方法标准》 (GB/T 50266—2013)对所用砂进行颗粒级配分析 试验,粗砂特征粒径及特征参数见表 3,颗粒级配曲 线见图 3。

表 3 粗砂的特征粒径及特征参数

Table 3 Characteristic size and characteristic

parameters of coarse sand

土性	粗砂	土性	粗砂
d60	0.464	Cu	5.21
d30	0.263	Cc	1.675
d10	0.089		

称取烘干的粗砂 500 g 放置于托盘,均匀喷洒 水量分别为 0、40、80、120 g 配制含水量分别为 0%、 8%、16%、24%的使用粗砂试样,将配制好的粗砂放 置封闭的试样袋中保存。

在剪切试验中,首先将配置好的粗砂试样放置 于剪切盒中,进行垂直方向加载,加载速率为 0.5 kN/s。在一定法向荷载下进行固结,并采集法 向荷载和法向位移数据。当固结稳定(稳定标准控 制在 0.002 5 mm/min 约 3 min)后,法向荷载保持 恒定的情况下开始剪切试验,剪切速率为 0.02 mm/s,当剪切应力-位移曲线出现平台或者剪切位 移大于 20 mm 时停止剪切,试验过程中记录接触 面的剪应力、相对剪切位移及试样的法向位移等试 验数据。

1.4 试验方案

接触面直剪试验选取法向应力、接触面粗糙度、 基底硬度、土样含水量4个接触面剪切特性的影响 因素进行试验研究,每个影响因素安排4个水平,试 验因素安排情况见表4。

		st inclose and	
法向应力 (A)/MPa	接触面粗糙 度(B)/mm	基底硬度 (C)	含水量 (D)/%
2(A1)	0(B1)	281(C1)	0(D1)
4(A2)	2(B2)	33.9(C2)	8(D2)
6(A3)	3(B3)	38.1(C3)	16(D3)
8(A4)	4(B4)	41.9(C4)	24(D4)

表 4 试验因素水平安排表 Table 4 Table of test factors and levels

试验方案按正交表 L₁₆(4⁵)进行规划。为便于 记录,对各组试验进行统一编号,以编号 A2-B3-C1-D4 为例,表示法向应力 4 MPa,接触面粗糙度为 0 mm,基底硬度为 28.1,含水量为 24%的一组试验, 其他编号试验意义相同。

2 试验结果与初步分析

2.1 剪切应力-位移曲线

根据试验系统采集的剪切应力-位移试验数据, 得到土与结构接触面的剪切应力-位移曲线,见 图 4。

由图 4 可知,不同基底硬度的剪应力--位移曲线 在高应力作用下变化形态基本一致,法向应力对曲 线影响明显,极限抗剪强度随着法向应力增大而增 大,剪切刚度随着剪切位移的增大而逐渐减小,初始 剪切刚度随法向应力的增大而增大;随法向应力的 增大,可推测接触面极限抗剪强度对应的剪切位移 有所增加;法向应力等于 2 MPa 时,剪切应力--位移 曲线呈现屈服平台,法向应力大于 2 MPa 时,曲线 表现出明显的应变硬化特征,其原因在于法向应力 等于 2 MPa 时,粗砂颗粒破碎比较稳定,孔隙比变 化不大,由密度与抗剪强度唯一关系原则^[9],抗剪强 度趋于稳定值。当法向应力大于 2 MPa 时,粗砂颗 粒随剪切位移增大而破碎量增多,孔隙比随之减小, 密度增大,抗剪强度提高。

在法向应力一样的情况下,由于接触面粗糙度 的不同,土与结构接触面力学特性有所不同:当法向 应力等于2 MPa时,随接触面粗糙度的增加达到极 限抗剪强度的剪切位移先增加后减小,在接触面棱 台高度为3 mm时,达到抗剪强度所需的剪切位移 最大,当法向应力大于2 MPa时,达到极限剪切强 度的剪切位移基本不再随接触面粗糙度的不同而变 化。在相同法向应力下,含水量为0%的干砂初始 抗剪刚度较湿砂大。高应力直剪条件下剪应力与剪 切位移关系曲线呈非线性关系,形态上与双曲线模 型曲线相似,接触面初始剪切刚度受接触面各影响 因素影响明显。

2.2 剪切应力-位移数据的回归分析

将非线性双曲线模型 $\tau = w_s/(aw_s + b)$ 转化为 线性回归模型 $w_s/\tau = aw_s + b^{[15]}, w_s$ 为剪切位移,a、 b 为模型回归参数,采用转化后的线性回归模型对 数据进行回归分析,分析结果见表 5。由表 5 可知, 高应力作用下接触面的剪切应力--位移试验数据采 用双曲线进行拟合时,相关系数均在 0.97 以上,表 明高应力状态下剪切应力--位移关系可采用双曲线 模型刻画。

表 5 试验数据按双曲线模型回归结果 Table 5 Regression results of experimental data

条件	a/MPa^{-1}	$b/(\text{mm} \cdot \text{MPa}^{-1})$	相关参数 R
A2-B1-C2-D0	0.689	0.554	0.988
A4-B2-C2-D24	1.167	0.217	0.971
A6-B3-C2-D8	0.520	0.181	0.992
A8-B4-C2-D16	0.392	0.155	0.987
A2-B2-C3-D8	0.978	0.508	0.997
A4-B1-C3-D16	0.896	0.280	0.974
A6-B4-C3-D0	0.439	0.215	0.995
A8-B3-C3-D24	0.360	0.137	0.997
A2-B3-C4-D16	1.656	0.458	0.993
A4-B4-C4-D8	0.640	0.291	0.996
A6-B1-C4-D24	0.353	0.186	0.993
A8-B2-C4-D0	0.284	0.152	0.997
A2-B4-C5-D24	0.561	0.701	0.989
A4-B3-C5-D8	0.394	0.316	0.992
A6-B2-C5-D16	0.403	0.195	0.995
A8-B1-C5-D8	0.531	0.117	0.993

由双曲线模型得接触面极限抗剪强度 τ_ω为

$$\tau_{u} = \lim_{w_{s} \to \infty} \frac{w_{s}}{aw_{s} + b} = \frac{1}{a}$$
(1)

接触面剪切应力-位移关系的斜率为接触面剪 切刚度 k_{st},即

$$k_{\rm st} = \frac{\partial \tau}{\partial w_{\rm s}} = b/(aw_{\rm s} + b)^2 \tag{2}$$

剪切位移趋近于零时接触面剪切刚度为初始剪切刚度 k_{st0},即

$$k_{\rm st0} = \lim_{w_{\rm s}\to\infty} \left(\frac{\partial \tau}{\partial w_{\rm s}}\right) = \frac{1}{b} \tag{3}$$

利用式(1)、式(3)对表5中的两个回归参数a、b

进行计算,求得高应力下粗砂与混凝土结构接触面的极限剪切强度和初始剪切刚度,见表 6。

表 6 接触面极限抗剪强和初始剪切刚度

Table 6 Ultimate shear strength and initial shear stiffness

试验			因素			抗剪强度/	初始剪
号	А	В	С	D	Е	MPa	切刚度
1	A1	B1	C1	D1	E1	1.604	1.451
2	A1	B2	C2	D2	E2	1.687	1.022
3	A1	B3	C3	D3	E3	1.644	0.604
4	A1	B4	C4	D4	E4	1.314	1.783
5	A2	B1	C2	D3	E4	2.737	1.115
6	A2	B2	C1	D4	E3	3.040	0.856
7	A2	B3	C4	D1	E2	2.904	2.536
8	A2	B4	C3	D2	E1	2.903	1.562
9	A3	B1	C3	D4	E2	4.492	2.827
10	A3	B2	C4	D3	E1	4.276	2.484
11	A3	B3	C1	D2	E4	4.499	1.922
12	A3	B4	C2	D1	E3	3.908	2.276
13	A4	B1	C4	D2	E3	6.001	1.884
14	A4	B2	C3	D1	E4	5.561	3.512
15	A4	B3	C2	D4	E1	5.864	2.773
16	A4	B4	C1	D3	E2	5.273	2.547

3 接触面剪切特性影响因素分析

采用直观分析法进行分析、计算时,先计算某因 素各水平的指标平均值和极差,再根据极差的大小, 确定各因素对指标影响的主次顺序,根据因素水平 与指标平均值的关系图来分析因素水平对指标的 影响。

3.1 接触面抗剪强度影响因素分析

从试验方案可知,法向应力 A 为 2、4、6、8 MPa,分别做了 4 个试验,为比较哪个法向应力对接触面抗剪强度影响最小,选取接触面抗剪强度(表 6)中法向应力 2 MPa 所对应的抗剪强度值,法向应力 2 MPa 所对应的 4 个试验抗剪强度之和为 K_{1j} ,法向应力 4 MPa 所对应的 4 个试验抗剪强度之和为 K_{2j} ,法向应力 6 MPa 所对应的 4 个试验抗剪强度之和为 K_{3j} ,法向应力 8 MPa 所对应的 4 个试验

为考察平均一次试验的影响,分别将 K_{1j} 、 K_{2j} 、 K_{3j} 、 K_{4j} 除以试验次数4,得到法向应力为2、4、6、8 MPa接触面抗剪强度平均值 K_1 、 K_2 、 K_3 、 K_4 。将平 均值中最大值减平均值中最小值,得到接触面抗剪 强度平均效应的极差(用R表示)。同理,对接触面 粗糙度 B、基底硬度 C、含水量 D,分别求出其对应的 K_{ij}、K_i(i=1、2、3、4)和极差,并将计算结果填入表 7 相应位置,因素影响作用对比极差越大,说明该因素 对指标影响越大。

采用直观分析法对接触面抗剪强度试验数据进 行分析,见表 7 和图 5。

表 7 接触面抗剪切强度的直观分析结果

 Table 7
 Visual analysis results of shear strength of

contact surface					
变量	法向应力	接触面粗糙度	基底硬度	含水量	
K_{1j}	6.248	14.833	14.415	13.977	
K_{2j}	11.584	14.564	14.195	15.089	
K_{3j}	17.175	14.911	14.599	13.930	
K_{4j}	22.699	13.398	14.496	14.710	
K_1	1.562	3.708	3.604	3.494	
K_2	2.896	3.641	3.549	3.770	
K_3	4.294	3.728	3.650	3.483	
K_4	5.675	3.350	3.624	3.677	
R	4.113	0.378	0.101	0.278	

由表 7 可知,对于粗砂与结构接触面极限抗剪 强度各因素的影响顺序为法向应力影响最大,其次 为接触面粗糙度,第三为含水量,混凝土强度影响最 小。由图 5 可知,随着法向应力的增大,极限剪切强 度也随之增大,并表现出明显的线性关系,这是因为 法向应力增大粗砂与结构接触面摩擦力也增大,根 据非粘性土抗剪强度规律粗砂极限抗剪强度受法向 应力与内摩擦角影响,内摩擦角不变极限抗剪强度 随法向应力线性增长;随着接触面粗糙度增加极限 剪切强度呈现先增加后减小的趋势,其原因在于粗 糙面较小时,砂粒与接触面粗糙度增大至沟槽宽度与 粗砂粒径相近,颗粒与接触面发生镶嵌,对颗粒移动 形成阻碍,极限抗剪强度增加,粗糙度进一步增加, 颗粒与接触面镶嵌较小剪应力有所下降,极限抗剪 强度也随之减小;混凝土强度与含水量对极限剪切 强度影响微小。

3.3 接触面初始剪切刚度影响因素分析

采用直观分析法对接触面初始剪切强度试验数 据进行分析,见表 8 和图 6。

表 8 接触面初始剪切刚度的直观分析结果

Table 8 Visual analysis results of initial shear stiffness of

contact surface					
变量	法向应力	接触面粗糙度	基底硬度	含水量	
K_{1j}	4.860 0	7.279	6.776	9.775	
K_{2j}	6.069 4	7.874	7.186	6.390	
K_{3j}	9.509 9	7.834	8.506	6.750	
K_{4j}	10.715 8	8.169	8.687	8.240	
K_1	1.215 0	1.820	1.694	2.444	
K_2	1.5170	1.968	1.796	1.598	
K_3	2.3770	1.959	2.126	1.687	
K_4	2.678 9	2.042	2.172	2.060	
R	1.463 9	0.223	0.478	0.846	

由表 8 可知,对于砂与结构接触面接触面初始 剪切刚度受法向应力影响最大,其次为含水量,再次 为混凝土强度,接触面粗糙度影响最小。由图 6 可 知:随着法向应力的增大,初始剪切刚度近似线性增 长,主要原因在曲线初始阶段土的弹性性质比较明 显,粗砂颗粒的调整刚刚开始,颗粒调整消耗的能量 较小,法向应力越大,颗粒密实度增加,颗粒弹性势 能增强,剪切能与法向压力呈正比,但由于不同法向 应力造成粗砂颗粒破碎的差异,而略有波动,造成线 段非完全线性;随着含水量的增大,初始剪切刚度表 现先增大后减小,最小值出现在含水量 8%~16% 之间,主要原因在于不含水的干砂抗破碎强度小,容 易受压破坏,从而粗砂密实度增加,粗砂与混凝土结 构接触面之间的抗剪能力增强,随着含水量的增加, 出现土颗粒间水膜的"吸附"现象,颗粒间水膜分担 一部分颗粒受力,粗砂的抗破碎强度逐渐变大,减少 了颗粒破碎量,但当含水量继续增加时,土颗粒间水 膜的"吸附"作用逐渐减小,直至消失,此时粗砂的抗 破碎,强度又逐渐变小,即颗粒抗破碎强度存在一个 最优含水量^[16],使抗破碎强度达到最大,文献[17] 指出,动正应力相同的情况下,不同含水量的骨架曲 线无论是高还是低,正应力都存在一个临界含水量, 该临界含水量为 11.2%,与本文曲线吻合;混凝土 强度硬度大容易对受剪颗粒造成破坏,而增加剪应 力,接触面粗糙度对极限剪应力影响小,表现出随粗 糙度增加而略微增加。

3.4 接触面颗粒相对破碎影响因素分析

颗粒破碎是指砂土颗粒在受到外部荷载作用下 产生结构破坏或破损,分裂成粒径相等或不等多颗 粒现象,主要表现为试验前后试样颗粒级配曲线的 变化。Hardin^[18]以试验前后颗粒级配曲线与粒径 d=0.074 mm 竖线所包围的总面积为总破碎 B_t ,将 试验前的颗粒级配曲线与粒径 d=0.074 mm 所围 成的面积为破碎势 B_p ,进而定义相对破碎 $B_r = B_t/B_p$,见图 7。

接触面直剪试验完成后,用铁勺从剪切盒上开 口端挖取砂粒,挖至距混凝土接触面厚约4 mm 处 停止挖砂,取下剪切盒,采集接触面上剩余的砂土颗 粒。然后将采集的试样进行保存,在试验室内进行 烘干和筛分,分别称量各筛层颗粒,根据称量数据利 用软件绘制接触面剪切破坏后试样的颗粒级配曲 线,室内烘干和筛分过程如图8。利用上述 Hardin 所定义的相对破碎计算不同接触面剪切条件下的试 样的相对破碎,结果见表9。

图 8 剪切后砂的烘干与筛分 Fig. 8 Drying and screening of sand after shearing

表 9 各条件下接触面颗粒相对破碎

 Table 9 Relative breakage rate of the contact surface under different conditions

试验号	$B_{ m r}$	试验号	$B_{\rm r}$
1	0.152	9	0.099
2	0.104	10	0.117
3	0.126	11	0.103
4	0.083	12	0.104
5	0.105	13	0.101
6	0.092	14	0.119
7	0.082	15	0.094
8	0.091	16	0.132

采用直观分析法对接触面剪切颗粒破碎率的试 验数据进行分析,见表 10、图 9。

表 10 接触面剪切颗粒破碎率的直观分析

 Table 10
 Visual analysis of shear particle breakage rate on contact surface

变量	法向应力	接触面粗糙度	基底硬度	含水量
K_{1j}	0.345	0.457	0.479	0.456
K_{2j}	0.370	0.432	0.406	0.398
K_{3j}	0.422	0.404	0.435	0.480
K_{4j}	0.446	0.408	0.383	0.369
K1	0.086	0.114	0.120	0.114
K2	0.092	0.108	0.101	0.100
K3	0.106	0.101	0.109	0.120
K4	0.111	0.104	0.096	0.092
R	0.029	0.013	0.024	0.028

由表 10 知,对于高应力直剪试验粗砂与结构接 触面颗粒破碎率各因素的影响顺序为:法向应力> 含水量>基底硬度>触面粗糙度。

由图 9 可知,混凝土颗粒相对破碎随法向应力 的增大而增大,法向应力 4~8 MPa 阶段比 2~4 MPa 阶段相对破碎增长明显;颗粒破碎在含水量为

0%的干砂时相对破碎高于含水量为8%的砂土颗粒,在含水量为16%时出现破碎峰值,随后破碎减弱;颗粒相对破碎随接触面粗糙度、基底硬度增大均表现出减小的趋势。

4 结论

利用自行改装、加工的高应力直剪仪进行含水 量为0%、8%、16%、24%的一系列砂在不同法向应 力下与不同接触面粗糙度、混凝土基底硬度的剪切 试验,得出以下结论:

1)高应力作用下极限抗剪强度随着法向应力增 大而增大,接触面剪切刚度随着剪切位移的增大而 减小;法向应力等于2 MPa时,剪切应力-位移曲线 呈现屈服平台,法向应力大于2 MPa时,曲线表现 出明显的应变硬化特征。

2)当法向应力等于 2 MPa 时,随接触面粗糙度 的增加,达到极限抗剪强度的剪切位移先增加后减 小,当法向应力大于 2 MPa 时,达到极限剪切强度 的剪切位移基本不再随接触面粗糙度的不同而变 化。该高应力直剪条件下剪切应力-位移关系曲线 可采用双曲线模型描述。

3)粗砂与界面初始抗剪刚度随法向应力呈现线 性关系,且随接触面粗糙度、基底硬度的增大上升趋 势明显,界面初始抗剪刚度所受因素影响从大到小 依次为:法向应力>含水量>接触面粗糙度>基底 硬度。

4)粗砂与结构界面极限抗剪强度受法向应力影 响最大,抗剪强度与法向压力较为接近线性,其次为 接触面粗糙度,含水量的影响略高于混凝土界面 强度。

5)高应力直剪作用下粗砂与结构接触面的颗粒

相对破碎受法向应力影响最大,其次为含水量,再次 为基底硬度,接触面粗糙度影响最小,并且颗粒相对 破碎随法向应力增达而增大,随混凝土粗糙度与基 底硬度的增大而减小,随含水量增加存在破碎的破 碎峰值。

参考文献:

[1]郭佳奇,刘希亮,苏承东.高应力下砂土与结构界面单 剪试验研究[J].土木建筑与环境工程,2008,33(4): 120-126.

GUO J Q, LIU X L, SU C D. Simple shear test of interface between sand and structure under high stress [J]. Journal of Civil Architectural & Environmental Engineering, 2008, 33(4):120-126. (in Chinese)

- [2] POTYONDY J G, ENG M. Skin friction between various soils and construction materials [J]. Geotechnique, 1961(11): 339-353.
- [3]杨大方,刘希亮,何军. 粘土与结构接触界面剪切特性 的试验研究[J].金属矿山,2009(3):39-40. YANG D F, LIU X L, HE J. Experimental research on the shear characteristics of interface between clay and structure [J]. Metalmne, 2009(3):39-40. (in Chinese)
- [4]冯大阔,侯文峻,张建民.不同法向边界条件接触面三 维力学特性的试验研究[J].岩土力学,2001,31(8): 2419-2424.

FENG D K, HOU W J, ZHANG J M. Experimental study of 3D cyclic behavior of interface under different normal boundary conditions [J]. Rock and Soil Mechanics, 2001,31(8):2419-2424. (in Chinese)

 [5]龚辉,赵春风,陶帼雄.应力历史对黏土-混凝土界面剪 切特性的影响研究[J].岩石力学与工程学报,2011,30 (8),1712-1719.

GONG H, ZHAO C F, TAO G X. Research on effect of stress history on shear behavior of interface between clay and concrete [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30 (8), 1712-1719. (in Chinese)

[6]陈俊桦,张家生,李键. 接触面粗糙度对红黏土-混凝 土接触面力学性质的影响[J]. 中南大学学报(自然科学 版),2016,45(5):1682-1688.

CHEN J H, ZHANG J S, LI J. Influence of interface roughness on mechanical properties of red clay-concrete interface [J]. Journal of Central South University (Science and Technology), 2016,45(5):1682-1688. (in Chinese)

[7] PRASHANTH V, MADHAVI L G. Shear behavior of sand-smooth geomembrane interfaces through microtopograpical analysis [J]. Geotextiles and Geomembranes, 2016,44(4):592-603.

- [8] ALIYEH A N, ALI L, PILTAN T S. Influence of particle shape on the shear strength and dilation of sand-woven geotextile interfaces [J]. Geotextiles and Geomembranes, 2017, 45(1):54-66.
- [9]刘希亮,罗静. 高应力下接触面抗剪特性影响因素分析 [J]. 山东大学学报(工学版),2003,33(4):461-466. LIU X L, LUO J. The affecting factors analysis on the shearing characteristic of the interface under high pressure [J]. Journal of Shandong University (Engineering Science), 2003,33(4):461-466. (in Chinese)
- [10]郭佳奇,刘希亮,乔春生. 高应力下干砂与饱和砂单剪 特性比较[J].北京交通大学学报,2008,34(1):69-72.
 GUOJQ,LIUXL,QIAOCS. Comparison of the simple shear property between dry and saturated sand uder high stress [J]. Journal of Beijing Jiaotong University, 2008,34(1):69-72. (in Chinese)
- [11]夏红春,周国庆. 土-结构接触面剪切力学特性及其影响因素试验[J].中国矿业大学学报,2010,39(6): 831-836.

XIA C H, ZHOU G Q. Experiment study of the shear mechanical characteristics at a soil-structure interface and the factors affecting them [J]. Journal of China University of Mining and Technology, 2010,39(6):831-836. (in Chinese)

[12]郭佳奇. 一种高应力剪切仪: 201520626812. 7[P]. 2015-08-10.

GUO J Q. A high stress shear apparatus: 201520626812.7 [P]. 2015-08-10. (in Chinese)

[13]中华人民共和住房和城乡建设部.普通混凝土配合比设 计规程:JGJ 55—2011[S].北京:中国建筑工业出版 社,2011.

Chinese People's Republican Housing and Urban-Rural Development Department. Design procedures for common concrete mixture ratio: JGJ55-2011 [S]. Beijing: China Architecture & Building Press, 2011. (in Chinese)

[14]中华人民共和住房和城乡建设部. 混凝土强度检验评定 标准:GB/T 50107—2010 [S]. 北京:中国建筑工业出版 社,2010.

Chinese People's Republican Housing and Urban-Rural Development Department. Inspection and evaluation standards for concrete strength: GB/T 50107-2010 [S]. Beijing: China Architecture & Building Press, 2010. (in Chinese)

- [15] CLOUGH G W, DUNCAN J M. Finite element analysis of re-taining wall behavior [J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1971,97(SM12): 1657-1674.
- [16]中华人民共和国住房和城乡建设部.水利水电工程地 质勘察规范:GB 50487—2008[S].北京:中国计划出版 社,2009.

Ministry of Housing and Urban-Rural Development, People's republic of China. Water conservancy and hydropower project geological survey specification: GB 50487-2008 [S]. Beijing: China Plan Press, 2009. (in Chinese)

[17]王海东,李建文,陈曦,等. 非饱和重塑粗砂动力特性 循环单剪试验研究[J]. 岩土力学,2016,37(11): 3115-3122.

WANG D H, LI J W, CHEN X, et al. Dynamic characteristics of unsaturated remolded sandy soil through cyclic shear tests [J]. Rock and Soil Mechanics, 2016,37(11): 3115-3122. (in Chinese)

[18] HARDINCS. Crushing of geotechincal engineering [J]. American Society of Civil English, 1985, 111 (10): 1177-1192.

(编辑 王秀玲)