doi:10.11835/j.issn.2096-6717.2019.082

混凝-超滤工艺去除水中复合污染物试验研究

赵纯1,金凡1,安叶1,孙志华2,郑怀礼1

(1.重庆大学城市建设与环境工程学院;三峡库区生态环境教育部重点实验室;低碳绿色建筑国际联合研究中心, 重庆400045;2.石河子大学水利建筑工程学院,新疆石河子832003)

摘 要:研究分析腐殖酸对水溶液中纳米 TiO₂ 稳定性的影响,探究混凝剂投加量、pH 值、钙离子 对混凝-超滤工艺去除水中腐殖酸-纳米 TiO₂ 复合污染物的影响。结果表明,纳米 TiO₂ 与腐殖酸 在水溶液中发生静电吸附以及配位反应,使纳米 TiO₂ 有效粒径减小,静电斥力增强,胶体分散更均 匀,体系稳定性增加,易于迁移,从而给饮用水安全带来威胁。在单因素影响实验中,实验结果显 示,混凝剂浓度为 0.46 mmol/L、pH 值在 7~8 之间(即弱碱性)时,能有效去除复合污染物,此时, 膜通量较高,膜污染较轻,而水中钙离子的存在会加重膜污染。

关键词:纳米二氧化钛;腐殖酸;混凝;超滤;膜污染 中图分类号:X703.1 文献标志码:A 文章编号:2096-6717(2019)04-0143-07

Removal of compound pollutants in water by microflocculation-ultrafiltration process

Zhao Chun¹, Jin Fan¹, An Ye¹, Sun Zhihua², Zheng Huaili¹

(1. College of Urban Construction and Environment Engineering; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, P. R. China; 2. College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi 832003, Xinjiang, P. R. China)

Abstract: The effect of humic acid (HA) on the stability of nano-TiO₂ was analyzed, and the effects of coagulant dosage, pH and calcium (II) concentration on the removal efficiency of HA-TiO₂ composite pollutants by the coagulation-ultrafiltration process were investigated. The results showed that the electrostatic adsorption and coordination reaction occurred between nano-TiO₂ and HA in the aqueous solution, which caused the decrease of effective particle size of nano-TiO₂, the enhancement of electrostatic repulsion, more uniform dispersion of colloid, the increase of system stability and easy migration. These

- 基金项目:中央高校基本科研业务(2018CDYJSY0055、106112014CDJZR210004);国家自然科学基金(21477010);大型仪 器基金(201406150031)
- 作者简介:赵纯(1982-),男,副教授,博士生导师,主要从事给水处理理论与技术、高级氧化技术、工业难降解有机废水处 理研究,E-mail:pureson@163.com。

Received: 2018-09-30

- Foundation item: Fundamental Research Funds for the Central Universities (No. 2018CDYJSY0055,106112014CDJZR210004); National Natural Science Foundation of China (No. 21477010); Large Instrument Fund Project (No. 201406150031)
- Author brief:Zhao Chun (1982-), associate professor, doctorial supervisor, main research interests: water treatment theory and technology, advanced oxidation technology, industrial refractory organic wastewater treatment research, E-mail:pureson@163.com.

收稿日期:2018-09-30

Keywords: nano-titanium dioxide; humic acid; coagulation; ultrafiltration; membrane fouling

近年来,随着居民生活质量的提高,饮用水安全问题备受关注,研究日趋深入。纳米材料作为一种 广泛应用于化工制造、个人护理及食品工业等的新 材料,进入天然水体后,天然有机物质(NOM,如腐 植酸、富里酸等)与纳米粒子间的相互作用可能改变 其毒性和稳定性,对其在环境中的迁移和转化有重 要影响,给饮用水安全带来威胁^[1-3]。学者们考察了 纳米材料本身的性质,以及环境溶液的化学性质和 物理因素对纳米材料在水体中的沉积、聚集及其潜 在危害的影响,而关于纳米材料与 NOM 在水溶液 中形成的复合污染物的研究却很少^[4-5]。因此,研究 NOM 与纳米颗粒在水中的相互作用具有实际 价值。

in the solution will lead to the increase of membrane fouling.

传统的水处理工艺对纳米颗粒的去除并不理 想,而超滤因能有效截留水中胶体、悬浮物、细菌等, 在纳米颗粒去除方面展现出优势,但却面临膜污染 等问题^[6]。不过,将超滤与其他技术(混凝^[7-8]、吸 附^[9-10]、预氧化^[11-12]等)相结合,能有效减轻膜污染, 其中,混凝-超滤因具有成本低、操作简单、处理效果 好等优点而得到广泛应用。纳米颗粒经过混凝后凝 聚,用膜过滤有很好的去除效果,且与传统的过滤方 法相比,膜滤对水中的纳米颗粒表现出更好的去除 效果^[13-14]。

选取腐殖酸(HA)和纳米二氧化钛(纳米 TiO₂) 作为研究对象,对纳米 TiO₂ 与腐殖酸之间的相互作 用进行简单分析,探究混凝剂投加量、溶液 pH 值及 钙离子浓度对混凝-超滤工艺(C-UF)去除 HA-纳米 TiO₂ 复合污染物(HA-T)的影响。

1 实验材料与方法

1.1 实验材料

实验所涉及的材料及药品信息见表1。

表 1 实验所用材料及药品一览表

Tabel 1 List of materials and drugs used in the experiment

序号	名称	生产厂家	备注
1	聚醚砜超滤膜	上海优誉仪器仪表	$\phi85~mm{\times}100$ Kd,
		有限公司	带负电

		续表1	
序号	名称	生产厂家	备注
2	腐殖酸	国药集团化学试剂 有限公司	生化试剂(BC)
3	二氧化钛	德国 Degussa 公司	分析纯
4	氢氧化钠、硫酸铵、硫 酸铁、硫酸、氯化钙等	国药集团化学试剂 有限公司	分析纯

注:实验中原水用蒸馏水配制,其他所有试剂溶液均采用超 纯水(18.20 MΩ・cm)配制。

1.2 实验方法

1.2.1 聚合硫酸铁配制 混凝剂聚合硫酸铁 (PFS)为实验室所制备^[15], PFS 母液配制浓度为 2.857 mol/L,有效浓度为 80%,稀释 20 倍,制得的 混凝剂 PFS 浓度 $C_0 = 0.114$ mol/L。

投药后水样中 PFS 浓度 C(mmol/L)按式(1)计算。

$$C = C_0 \times V_1 / V_2 \tag{1}$$

式中:V₁为 PFS 体积, mL;V₂为实验水样体积, L。 1.2.2 原水配制 配制 1.0 g/L HA 储备液:将 1.0 g HA和 0.40 g NaOH 溶解于 1 000 mL 超纯水 中,室温(25 ℃)下搅拌 24 h, 用 0.45 µm 滤膜过滤 后, 于 4 ℃环境中保存备用。

配制 1.0 g/L 纳米 TiO₂ 储备液:将 0.10 g TiO₂ 固体粉末溶解于 100 mL 超纯水中,并在超声 机内(40 kHz)超声 0.5 h 以上,使其均匀分散,然后 于 4 ℃环境中保存备用。

配置 10 mg/L HA-T 复合污染物:将纳米 TiO₂ 储备液超声处理 20 min,分别取 4 mL 1.0 g/L HA 储备液和 4 mL 纳米 TiO₂ 储备液,用蒸馏水稀释至 400 mL,待用。

1.3 实验装置及流程

C-UF工艺去除 HA-T 污染物的实验装置如图 1 所示。取 400 mL 水样置于烧杯中,调节 pH 值为 8.0,并加入 1.6 mL PFS 溶液进行烧杯实验,按照 以下程序运行:快搅 2 min(240 r/min),慢搅 20 min (40 r/min)。烧杯实验后,水样转移至超滤装置 (MSC300),以 0.15 MPa 的恒定压力过滤,与电子 天平(JJ523BC)相连接的电脑 PC 端实时记录滤液 质量。

Fig. 1 Scheme of the experimental apparatus

1.4 检测与分析

实验过程所涉及的分析检测项目见表 2。

1.5 膜通量测定

膜通量是指在一定压力下,单位时间内单位面 积膜材料所通过的流体量。它是反映膜性能的一个 重要参数,同时,膜污染状况也可以通过膜通量的变 化来体现。由于每个膜初始通量不同,实验采用比 通量 J_i/J₀ 来反映膜污染程度,J_i 为过滤 t 时刻的 膜通量,J₀ 为初始时刻膜通量。膜通量采用式(2) 进行计算。

$$J_t = V/A_t \tag{2}$$

式中: J_t 为过滤t时刻的膜通量, $L/(m^2 \cdot h)$;V为t过滤时间内的滤液体积,L;A为膜的有效面积, m^2 。

表 2 分析检测项目汇总

Table 2	Summary	of	analysis	and	test	items
---------	---------	----	----------	-----	------	-------

检测项目	仪器	型号	用途	
TOC 测定	总有机碳分析仪	TOC-VCPH	检测水样中 HA 含量	
纳米 TiO ₂ 检测 ^[16]	紫外可见分光光度计	TU1901	UV_{410} 测定纳米 TiO_2 的吸光度	
浊度	浊度仪	$2100\mathbf{Q}$	浊度测定	
Zeta电位值	Zetasizer Nano	ZS90	测定纳米 TiO2 及 HA 表面 Zeta 电位	
荧光光谱扫描[17]	荧光分光光度计	F-7000	扫描 HA-T 污染物	
电子显微镜扫描	双束场发射扫描		表征超滤膜表面滤饼层微观形态	
(SEM)	电子显微镜	MIKA 3 FE-SEM		

2 结果与讨论

2.1 纳米 TiO₂ 与 HA 的相互作用

2.1.1 Zeta 电位变化分析 水中悬浮的纳米 TiO₂ 颗粒表面基团不饱和会与水配位,水发生离解吸附 而生成羟基化表面^[18]。表面羟基可以在水溶液中 发生质子迁移,通过质子化呈现出酸性,也可以通过 去质子化表现出碱性。即

 \equiv TiOH⁺₂ \Longrightarrow TiOH+H⁺

$$\equiv$$
TiOH \Longrightarrow TiO⁻ + H⁺

为考察纳米 TiO₂ 与 HA 在水环境中的相互作 用,分别测定了 10 mg/L 纳米 TiO₂ 颗粒悬浮液与 10 mg/L HA 的 Zeta 电位。当 pH 值在 3~11 范围 内变化时,分别测定纳米 TiO₂ 颗粒及 HA 的表面 电位,结果如图 2 所示。由图 2 可知,当 pH<5.5 时,纳米 TiO₂ 表面羟基通过质子化,带正电;在 pH=5.5 时,纳米 TiO₂ 表面存在等电位点;纳米 TiO₂ 表面羟基在 pH>5.5 时,因失质子而带负电, 在 pH 值为 7、9、11 时,所对应的 Zeta 电位分别为 -9.5、-15.6、-19.6 mV,这说明 pH 的增大会导 致纳米 TiO₂ 表面负电性增强。

当 pH 值在 4~5.5 范围内,由于静电吸引 (Zeta_(HA) <0,Zeta_{(TiO₂}) >0),纳米 TiO₂ 易吸附在 HA 表面,且纳米 TiO₂ 随着有机物的迁移而迁移;在 pH>5.5时,Zeta_{(TiO₂})、Zeta_(HA)皆小于 0,纳米 TiO₂ 主 要通过配位交换方式富集在 HA 表面,使其本身 Zeta 电位进一步降低,静电斥力加强,从而在水溶液中更 稳定,易于迁移,这与已有研究相符^[19-20]。

2.1.2 同步光谱扫描分析 为进一步考察两者之间的关系,在10 mL 10 mg/L 的 HA 溶液中,分别加入 10 mL 浓度为 1、2、5、10、20 mg/L 的纳米 TiO₂ 溶液,在 240~600 nm 的波长下进行同步光谱扫描,结果如图 3 所示。由图 3 可知,荧光淬灭程度随纳米 TiO₂ 浓度的增加而加大,这归因于 HA 复杂的结构,其含有羧酸、酚羟基等官能团以及共轭芳香结构,纳米 TiO₂ 与其作用生成配位化合物,造成

荧光强度的降低^[17, 21]。因此,纳米 TiO₂ 浓度越高, 与 HA 发生的配位反应越多,荧光淬灭度越高,引起 空间位阻增大,分散性变好,迁移增强。

Fig. 2 The change of Zeta Potential

Fig. 3 The SSF spectrum of HA-T under different TiO₂-nano_d osage

2.2 不同因素对 C-UF 工艺处理效果的影响

混凝剂投加量对 C-UF 工艺处理效果的影 2.2.1 控制其他实验条件不变,改变混凝剂用量,通过 响 测定出水中 TOC 和纳米 TiO2 的含量来反映 C-UF 工艺的处理效果。由图 4(a)可以看出,当水样中混 凝剂浓度分别为 0.17、0.23、0.29、0.34、0.40、 0.46、0.51、0.57 mmol/L 时, TOC 和纳米 TiO₂ 的 去除率先上升后下降,当混凝剂浓度为 0.46 mmol/ L, TOC 和纳米 TiO2 去除率分别为 92. 32%、 90.56%,说明出水中 HA 及纳米 TiO2 含量很低, 且出水余浊经检测均低于 0.50 NTU, 处理效果较 好,出水水质最优。图 4(b)表明,当混凝剂浓度分 别为0.23、0.46、0.57 mmol/L 时, 膜过滤通量衰减 幅度分别为 35.83%、20.75%和 35.17%,说明当 PFS 浓度为 0.46 mmol/L 时, 膜污染速率相对较 低。这主要是因为膜通量的大小与水样中的絮体尺 寸直接相关,而絮体尺寸又与混凝剂投加量密切相

关。当 PFS 投加量较低时,混凝主要通过电性中和 作用形成较小的絮体,从而造成膜孔堵塞;随着 PFS 的投加量增大,混凝主要通过吸附架桥或网捕卷扫 作用形成较大的絮体,这些较大尺寸的絮体不易堵 塞膜孔,从而减缓膜污染。但是,当 PFS 过量使用 时,絮体所带电荷反转而相互排斥,再加上搅拌所形 成的水力剪切作用,较大尺寸的絮体会解体,从而又 加剧了膜污染。

Fig. 4 Effect of different coagulant dosage on C-UF process and membrane flux

2.2.2 pH对C-UF工艺处理效果的影响 pH值 是给水处理中重要的水质参数,它的变化会影响水 处理的效果。实验通过固定其他反应条件,改变进 水初始 pH值来进行。

从图 5(a)可观察到,随 pH 值增大,TOC、纳米 TiO₂ 去除率均先升高后降低。出水余浊经检测皆 低于 0.30 NTU。图 5(b)显示,随 pH 值升高,膜通 量的衰减幅度先减小后增加,在 pH 值为 8 时最高。 这可能是因为 pH 对纳米颗粒和 HA 之间的相互作 用有一定的影响,HA 主要通过静电吸附和配位交 换的方式吸附于纳米颗粒表面,酸性条件下,HA 表 面官能团难以离解,分子链趋于卷曲成团;强碱性条 件下,絮体因带负电而相互排斥,难以聚集,且 PFS 水解加速易生成 Fe(OH)₃ 沉淀,容易引起膜孔窄化 而堵塞膜孔,所以,pH 值在 7~8 时,更有利于控制 膜污染。

图 5 pH 对 C-UF 工艺处理效果及膜通量的影响

Fig. 5 Effect of pH level on C-UF process and membrane flux

2.2.3 钙离子浓度对 C-UF 工艺的影响 图 6(a)、 (b)分别显示了钙离子浓度对 C-UF 工艺去除率和 膜通量的影响。由图 6(a)可知,随着 Ca²⁺浓度增 加,TOC 去除率降低,纳米 TiO₂ 去除率先增加后减 小。经检测,出水余浊也由 99.00%降至 94.21%, 这表明,添加 Ca²⁺不利于反应的进行。图 6(b)显示 出膜通量的衰减幅度也随 Ca²⁺浓度的增加而增大, 这是由于 Ca²⁺进一步降低了膜表面的电荷,絮体带 正电荷发生胶体保护现象,从而使水处理效果变差。

2.3 膜表面滤饼层形态分析

对实验后的滤膜进行 SEM 扫描,可以更加直观 地观察膜表面滤饼层微观形态。图 7(a)为原始滤 膜表面,干净光滑;图 7(b)为最优条件下(pH=8,混 凝剂投加量为 0.46 mmol/L,不添加 Ca²⁺)滤膜表 面滤饼层,可观察到其交连的大分子骨架结构,孔隙 率高,膜堵塞情况较轻;图 7(c)为将 pH 值调整为 4 时滤膜表面滤饼层,表面絮体密实,骨架结构分布不 均匀,孔隙率低;图 7(d)为 80 mg/L Ca²⁺时滤膜表 面滤饼层,其他条件同图 7(b),与图 7(b)的大分子 骨架结构明显不同,絮体结构致密,孔隙小,说明 Ca²⁺的存在会加重膜污染。根据 XDLVO 理论,pH 值、PFS 浓度、Ca²⁺浓度对膜表面的污染程度主要取 决于污染物与膜材料、离子等相互作用的自由能,调

and membrane flux

Fig. 7 SEM of ultrafiltration membrane under different conditions

低 pH 值、投加阳离子等措施都将导致自由能减少, 膜污染加重^[22-23]。

3 结论

1)水溶液中纳米 TiO₂ 与 HA 会发生静电吸附 以及配位反应,使纳米 TiO₂ 水溶液体系的有效粒径 减小,静电斥力变大,纳米 TiO₂ 稳定性增强,胶体分 散更均匀,易于迁移。

2)混凝剂投加量、pH值、Ca²⁺浓度都是影响 C-UF工艺处理效果的重要因素。PFS浓度为 0.46 mmol/L,弱碱性(pH值7~8)时,不添加钙离 子,处理效果较好;其中,混凝剂投加量过低或过高, 原水 pH 过低或过高,都会对 C-UF工艺处理 HA-T 复合污染物产生不利影响,使超滤膜过滤通量减小, 加重膜污染。

3)当混凝机理为以网捕卷扫、吸附架桥为主,以 电性中和为辅时,膜污染较轻,膜通量较高。

参考文献:

- [1] CHEN Q Q, YIN D Q, ZHU S J, et al. Adsorption of cadmium(II) on humic acid coated titanium dioxide [J]. Journal of Colloid and Interface Science, 2012, 367(1): 241-248.
- [2] WANG Y, XUE N, CHU Y B, et al. CuO nanoparticle-humic acid (CuONP-HA) composite contaminant removal by coagulation/ultrafiltration process: The application of sodium alginate as coagulant aid [J]. Desalination, 2015, 367: 265-271.
- [3] GHAEMI N, MADAENI S S, DARAEI P, et al. Polyethersulfone membrane enhanced with iron oxide nanoparticles for copper removal from water: Application of new functionalized Fe₃O₄ nanoparticles
 [J]. Chemical Engineering Journal, 2015, 263: 101-112.
- [4] 鲁晶, 刘冬梅, 刘世光, 等. 纳米 TiO₂ 颗粒与腐殖酸 和 SDBS 的相互作用机制[J]. 哈尔滨工业大学学报, 2015, 47(8): 21-24.

LU J, LIU D M, LIU S G, et al. Interaction mechanisms of the TiO_2 nanoparticles with humic acid and SDBS [J]. Journal of Harbin Institute of Technology, 2015, 47(8): 21-24. (in Chinese)

[5] LI L, SILLANPÄÄ M, RISTO M. Influences of water properties on the aggregation and deposition of engineered titanium dioxide nanoparticles in natural waters [J]. Environmental Pollution, 2016, 219: 132-138. [6]范小江,张锡辉,苏子杰,等.超滤技术在我国饮用水 厂中的应用进展[J].中国给水排水,2013,29(22): 64-70.

FAN X J, ZHANG X H, SU Z J, et al. Application of ultrafiltration technology in drinking water treatment plants in China [J]. China Water & Wastewater, 2013, 29(22): 64-70. (in Chinese)

- [7] FENG R Q, YUE Q Y, GAO B Y, et al. Effect of pH on floc properties and membrane fouling in coagulationultrafiltration hybrid process with different Al-based coagulants [J]. Desalination and Water Treatment, 2016, 57(54): 26041-26049.
- [8] DONG H Y, GAO B Y, YUE Q Y, et al. Floc properties and membrane fouling of different monomer and polymer Fe coagulants in coagulation-ultrafiltration process: The role of Fe (III) species [J]. Chemical Engineering Journal, 2014, 258: 442-449.
- [9] 董秉直,张庆元,冯晶,等.粉末活性炭预处理对超滤 膜通量的影响[J].环境科学学报,2008,28(10): 1981-1987.

DONG B Z, ZHANG Q Y, FENG J, et al. Influence of powered activated carbon (PAC) pretreatment on ultrafiltration membrane flux [J]. Acta Scientiae Circumstantiae, 2008, 28 (10): 1981-1987. (in Chinese)

[10] 冯萃敏, 张欣蕊, 孙丽华, 等. PAC-UF 工艺的膜污染 特性及膜污染物质研究[J]. 给水排水, 2015, 51(3): 125-131.

FENG C M, ZHANG X R, SUN L H, et al. Study on the characteristics of membrane fouling and the composition of matters for membrane fouling in PAC-UF process [J]. Water & Wastewater Engineering, 2015, 51(3): 125-131. (in Chinese)

[11] 陈卫, 袁哲, 徐林, 等. 高锰酸钾预氧化对有机物构型 与超滤膜污染的影响[J]. 中南大学学报(自然科学版), 2012, 43(1): 389-394.

CHEN W, YUAN Z, XU L, et al. Effect of KMnO₄ pre-oxidation on organic configuration and ultrafiltration membrane fouling [J]. Journal of Central South University, 2012, 43(1): 389-394. (in Chinese)

[12] 俞海祥, 伊学农, 杨光炜, 等. 臭氧超滤去除微污染水 中农药残留物[J]. 水处理技术, 2015, 41 (12): 110-113.

YU H X, YI X N, YANG G W, et al. Ozone cooperated with ultrafiltration for the removal of pesticide residues from slight-polluted water [J].

Technology of Water Treatment, 2015, 41(12): 110-113. (in Chinese)

- [13] MENG F G, CHAE S R, DREWS A, et al. Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material [J]. Water Research, 2009, 43(6): 1489-1512.
- [14] ZHANG Y, CHEN Y S, WESTERHOFF P, et al. Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles [J]. Water Research, 2009, 43(17): 4249-4257.
- [15] 乔永生,沈腊珍,李晓琛,等. Fe₃O₄/SiO₂ 复合粒子的 制备及对 Cd²⁺ 的吸附性能研究[J].中北大学学报(自 然科学版),2015,36(3):343-347,353.

QIAO Y S, SHEN L Z, LI X C, et al. Preparation of Fe_3O_4/SiO_2 composite particles for cadmium (II) adsorption from aqueous solution [J]. Journal of North University of China (Natural Science Edition), 2015, 36(3): 343-347,353. (in Chinese)

- [16] 罗敏. 紫外分光光度法测定聚酯纤维中二氧化钛含量
 [J]. 应用化工,2006,35(2):144-146.
 LUO M. Determination of titanium dioxide content in polyester fiber by UV-spectrophotometry [J]. Applied Chemical Industry, 2006, 35 (2): 144-146. (in Chinese)
- [17] ERHAYEM M, SOHN M. Effect of humic acid source on humic acid adsorption onto titanium dioxide nanoparticles[J]. Science of the Total Environment, 2014, 470/471: 92-98.
- [18] 刘媛媛, 潘纲. 吸附模式对有机物光催化降解的影响 1. H-酸在 TiO₂ 表面的吸附模式[J]. 环境化学, 2006, 25(1): 1-5.

LIU Y Y, PAN G. Effect of adsorption modes on the

photo catalytic degradation of organic matters 1. adsorption modes of H-acid on TiO₂[J]. Environmental Chemistry, 2006, 25(1): 1-5. (in Chinese)

- [19] ZHU M, WANG H T, KELLER A A, et al. The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths [J]. Science of the Total Environment, 2014, 487: 375-380.
- [20] LUO M X, HUANG Y X, ZHU M, et al. Properties of different natural organic matter influence the adsorption and aggregation behavior of TiO₂ nanoparticles [J]. Journal of Saudi Chemical Society, 2018, 22(2): 146-154.
- [21] ERHAYEM M, SOHN M. Stability studies for titanium dioxide nanoparticles upon adsorption of Suwannee River humic and fulvic acids and natural organic matter [J]. Science of the Total Environment, 2014, 468/469: 249-257.
- [22] 张冬, 董岳, 周东菊, 等. 基于 XDLVO 理论的超滤膜 污染机理研究[J]. 中国给水排水, 2016, 32(21): 66-70.

ZHANG D, DONG Y, ZHOU D J, et al. Study on fouling behavior of ultrafiltration membrane based on XDLVO theory [J]. China Water & Wastewater, 2016, 32(21): 66-70. (in Chinese)

[23] WANG J W, MO Y B, MAHENDRA S, et al. Effects of water chemistry on structure and performance of polyamide composite membranes [J]. Journal of Membrane Science, 2014, 452: 415-425.

(编辑 王秀玲)