doi: 10.11835/j.issn.2096-6717.2019.157

粗粒土在三向卸载时的强度特性试验研究

施维成1,朱俊高2,胡锡鹏3,代国忠1,李雄威1,李书进1

(1.常州工学院土木建筑工程学院,江苏常州213032;2.河海大学岩土力学与堤坝工程教育部重点实验室, 南京210098;3.中交第三公路工程局有限公司,北京101300)

摘 要: 卸载是引起岩土材料破坏的常见工况,为了研究粗粒土在不同中主应力系数 b 情况下三向 卸载时的强度特性,使用真三轴仪对粗粒土进行偏应力 q 保持 300 kPa 不变,球应力 p 不断减小的 等 q、等 b 三向等量卸载试验,分析三向卸载条件下粗粒土的强度特性,研究常用强度准则对卸载条 件粗粒土的适用性。试验结果表明:在三向等量卸载条件下,粗粒土的强度参数与中主应力系数 b 有关;对于不同的 b 值, b=0 时的内摩擦角 φ_b 最小,破坏应力比 M_b 最大;破坏应力比 M_b 随着 b 的增 大而减小,且随着 b 的增大,减小的梯度在逐渐减小;内摩擦角 φ_b 在 b 值较小时随着 b 的增大而增 大,在 b 值较大时随着 b 的增大而减小,3 个方向剪切的共同影响可以解释这一变化规律; Matsuoka-Nakai 强度准则、粗粒土应力不变量强度准则和 Lade-Duncan 强度准则这 3 个强度准则 都能反映内摩擦角 φ_b 与 b 之间的这一规律,其中,Matsuoka-Nakai 强度准则在 b 值较小时与试验结 果较为接近,粗粒土应力不变量强度准则在 b 值较大时与试验结果较为接近;粗粒土角隅函数强度 准则与等 q、等 b 试验结果较为吻合。

关键词:强度准则;粗粒土;强度参数;卸载;加载

中图分类号:TU447 文献标志码:A 文章编号:2096-6717(2020)02-0010-07

Experimental study on the strength characteristics of coarse-grained soil under three-dimensional unloading

Shi Weicheng¹, Zhu Jungao², Hu Xipeng³, Dai Guozhong¹, Li Xiongwei¹, Li Shujin¹
(1. School of Civil Engineering & Architecture, Changzhou Institute of Technology, Changzhou 213032, Jiangsu, P. R. China;
2. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University,
Nanjing 210098, P. R. China; 3. CCCC Third Highway Engineering CO., LTD, Beijing 101300, P. R. China)

Abstract: Unloading is a common condition that causes damage to geotechnical materials. In order to investigate the strength characteristics of the coarse-grained soil under three-dimensional unloading in different cases of the coefficient of intermediate principal stress b, several three-dimensional equal unloading tests in which the spherical stress p decreases with constant b and constant deviatoric stress q (300 kPa) were performed on coarse-grained soil by using true triaxial apparatus. The strength characteristics of coarse-grained soil were analyzed and the applicability of the commonly used strength criterions was

收稿日期:2019-07-18

基金项目:国家自然科学基金(51678083);常州市科技支撑计划(CE20195034)

作者简介:施维成(1982-),男,博士,教授,主要从事土的基本性质研究,E-mail: shiweicheng1982@163.com。

Received: 2019-07-18

Foundation items: National Natural Science Foundation of China (No. 51678083); Changzhou Science and Technology Support Program (No. CE20195034)

Author brief: Shi Weicheng (1982-), PhD, professor, main research interest: basic properties of soil, E-mail: shiweicheng1982@163.com.

studied. The test result shows that under the condition of three dimensional equal unloading, the strength parameter of coarse-grained soil is related to the coefficient of intermediate principal stress b. When b equals to 0, the internal friction angle φ_b is the minimum and the failure stress ratio M_b is the maximum. The stress ratio at failure decreases with the increase of b and, as b increases the gradient decreases gradually. The internal friction angle increases with b for small b values while decreases with the increase of b for large values. This can be explained by the co-impact of the shearing in three directions. All of the three strength criterions, including the Matsuoka-Nakai criterion, the criterion expressed by stress invariants of coarsegrained soil and Lade-Duncan criterion, can response the law between φ_b and b. It is found that the Matsuoka-Nakai criterion is the closest to the test results for small b values while the strength criterion expressed by stress invariants of coarse-grained soil is the closest to the test results for large b values. It is also found that the corner function strength criterion of coarse-grained soil is consistent with the experimental results.

Keywords: strength criterion; coarse-grained soil; strength parameter; unloading; loading

强度特性是土的重要力学性质,很多学者通过 剪切或三轴加载试验对其进行研究。卜建清等[1]通 过三轴试验研究了冻融次数、细粒含量以及围压对 粗粒土强度特性的影响。Asghari 等^[2] 对胶结砂进 行了一系列三轴试验,研究其强度特性。彭凯等[3] 通过大型单剪仪研究了不同泥皮成分对粗粒土-混 凝土接触面强度的影响。Wang 等^[4] 对粗粒盐碱土 进行了冻融循环下的直剪试验,提出了兼有含盐量 和冻融循环的经验公式。黄茂松等[5]总结了饱和黏 土、砂土及粗粒土的本构强度理论研究现状及发展 趋势。Aouali 等^[6]通过直剪试验研究了纤维加固泥 砂中纤维含量对强度的影响。徐肖峰等[7]使用大型 直剪仪对不同剪切速率下粗粒土的强度特性进行了 试验研究。Chen 等^[8]对加入4种不同比例碎石的 泥砂进行了三轴试验,分析了粗颗粒和细颗粒对强 度和变形的影响。Zaimoglu 等^[9] 通过一系列无侧 限抗压试验、直剪试验研究了随机分布的聚丙烯纤 维对细粒土强度特性的影响。Aslani 等^[10] 通过大 型直剪试验对石柱加固粘土的剪切强度进行了研 究。Deganutti 等^[11]对颗粒材料的摩擦角进行了研 究,认为摩擦角取决于颗粒的大小和形状。

卸载是工程中常见的工况,比如水库泄水、基坑 开挖等等,然而,对卸载条件下土的强度研究则相对 较少,部分学者对细粒土的卸载强度进行了研究。 蔡建等^[12]从理论上推导了土的卸载抗剪强度指标 计算方法,张玉等^[13]使用真三轴仪对黄土进行了平 面应变条件下的侧向卸载试验,何世秀等^[14]通过对 粉质黏土的卸载剪切试验整理分析,认为这种土近 似符合 Matsuoka-Nakai 准则,王大雁等^[15]研究了 经 K₀固结后兰州冻结黄土在径向卸载状态下的应 力-应变行为,认为可用主应力差渐近值与破坏比之 间的关系来估算破坏强度。李加贵等^[16]对黄土进 行了围压减小、轴压不变的三轴侧向卸荷剪切试验, 得到的强度参数低于三轴压缩试验结果。

粗粒土在土石坝等工程中应用广泛,且经历包 括加载、卸载在内的复杂工况。目前,对粗粒土强度 特性的研究一般还是基于粗粒土的加载试验,在卸 载尤其是不同中主应力系数情况下,三向卸载条件 下的粗粒土强度特性试验研究基本未见报道,笔者 使用真三轴仪对粗粒土进行等q、等b三向卸载试 验,研究粗粒土在三向卸载时的强度特性。

1 试验仪器

试验使用的真三轴仪可单独控制 3 个方向的主 应力 σ₁、σ₂、σ₃,如图 1(a)所示。竖向采用刚性板加 压,水平向分别采用水囊和复合加压块加压,如图 1 (b)所示。

2 试验材料、试验方法及应力路径

2.1 试验材料

试验土料为双江口心墙堆石坝的粗粒土,占总 重量 70%的颗粒粒径介于 5~10 mm 之间,30%的 颗粒粒径小于 5 mm,最小干密度 1.54 g/cm³,最大 干密度1.96 g/cm³。土样分 5 层击实,控制干密度 $\rho_d = 1.91$ g/cm³,相对密度 0.90,为简单起见,制样 和试验时的试样都为干样。试样尺寸为 120 mm× 60 mm×120 mm 的长方体。

2.2 试验方法

为研究粗粒土在三向卸载时的强度特性,进 行了中主应力系数 $b(b=(\sigma_2-\sigma_3)/(\sigma_1-\sigma_3))$ 分 別为 0、0.25、0.5、0.75、1,偏应力 $q(q = \sqrt{[(\sigma_1-\sigma_2)^2+(\sigma_2-\sigma_3)^2+(\sigma_3-\sigma_1)^2]/2})$ 保持 300 kPa不变,球应力 $p(p=\sigma_1+\sigma_2+\sigma_3)/3)$ 从 500 kPa 开始减小的等 q、等 b试验,直至试样破坏。

2.3 应力路径

等q、等b试验时,保持q和b为常数,p为变 量,算出相应的3个方向主应力 σ_1 、 σ_2 、 σ_3 ,卸载时,3 个方向主应力都以0.2 kPa/s的速度减小,图2为 不同b值时实测的 σ_1 、 σ_2 、 σ_3 随时间t的变化曲线。 可以看出,等q、等b试验中,3个方向的主应力 σ_1 、 σ_2 、 σ_3 都在不断等量减小,为三向等量卸载试验。

3 试验结果分析

表 1 和表 2 分别列出了等 q、等 b 试验初始状态 和破坏状态 3 个方向的主应力大小,表 2 还算出了 內摩擦角 $\varphi_b(\varphi_b = \arcsin[(\sigma_1 - \sigma_3)/(\sigma_1 + \sigma_3)])$ 和破 坏应力比 $M_b(=q/p)$ 。比较表 1 和表 2 可以看出, 破坏状态的 3 个方向主应力都比初始状态要小,为 三向卸载。由表 2 可见,在三向等量卸载条件下,粗 粒土的强度参数与中主应力系数 b 有关;对于不同 的 b \hat{a} ,b=0 时的内摩擦角 φ_b 最小,破坏应力比 M_b 最大;随着 b 的增加,内摩擦角 φ_b 逐渐变大,b=0.5时内摩擦角 φ_b 达到最大,当 b 值继续增大时,内摩 擦角 φ_b 则随着 b 的增大而减小,b=1时的内摩擦角 比 b=0 时的大;破坏应力比 M_b 随着 b 的增大而减 小,目随着 b 的增大,减小的梯度在逐渐减小。

Fig. 2 The stress time history curves

表 1 等 q、等 b 试验初始状态 3 个方向主应力大小汇总表 Table 1 Summary table of principal stresses in three directions in the initial state obtained from the q- and b- constant tests

b	σ_1/kPa	σ_2/kPa	σ_3/kPa	p/kPa	q/kPa
0.00	697.7	397.7	398.0	497.8	299.9
0.25	691.2	442.5	358.3	497.3	299.8
0.50	668.5	495.8	322.6	495.6	299.6
0.75	639.0	555.4	305.8	500.1	300.3
1.00	599.9	599.7	300.0	499.9	299.8

在三向主应力 σ_1 、 σ_2 、 σ_3 ($\sigma_1 \ge \sigma_2 \ge \sigma_3$)共同作用 下,剪切强度参数可以认为受 3 个因素共同影响:因素 1,在 σ_2 侧向约束下 σ_1 、 σ_3 间的剪切作用 $\sigma_1 - \sigma_3$; 因素 2,在 σ_1 侧向约束下 σ_2 、 σ_3 间的剪切作用 $\sigma_2 - \sigma_3$;因素 3,在 σ_3 侧向约束下 σ_1 、 σ_2 间的剪切作用 $\sigma_1 - \sigma_2$ 。内摩擦角 φ_b 在 b 值较小时随着 b 的增大而 增大,在 b 值较大时随着 b 的增大而减小的规律可 以由这3个因素的共同影响来解释。

表 2 等 q、等 b 试验破坏状态 3 个方向主应力大小汇总表 Table 2 Summary table of principal stresses in three directions in the failure state obtained from the the

q- and b-	constant	tests
-----------	----------	-------

b	σ_1/kPa	σ_2/kPa	σ_3/kPa	$arphi_b/(\degree)$	p/kPa	q/kPa	M_b
0.00	333.6	42.1	41.5	51.1	139.1	291.8	2.1
0.25	361.4	118.6	37.0	54.5	172.3	292.3	1.7
0.50	364.2	195.8	25.6	60.3	195.2	293.2	1.5
0.75	360.3	279.0	33.7	56.0	224.3	294.5	1.3
1.00	320.5	321.9	32.1	54.9	224.8	289.1	1.3

当 b=0 时, $\sigma_2 = \sigma_3$, $\sigma_2 - \sigma_3 = 0$,即在 σ_1 侧向约束 下, σ_2 , σ_3 间的剪切作用为 0,"因素 2"不会对试样的 剪切破坏产生影响,也就是不会对剪切强度参数产 生影响; $\sigma_1 - \sigma_2 = \sigma_1 - \sigma_3$,"因素 1"和"因素 3"都是在 σ_3 侧向约束下的剪切作用 $\sigma_1 - \sigma_3$ 。

当b从0开始增大,但仍处于较小值时(如试验 中b=0.25时),随着b的增大, $\sigma_2 - \sigma_3$ 增大,在 σ_1 侧 向约束下, σ_2 、 σ_3 间的剪切作用增大,有助于试样剪 切破坏,所以,"因素 2"使剪切强度参数减小,但由 于 $\sigma_2 - \sigma_3$ 数值较小,这个影响也较小;随着b的增 大, $\sigma_1 - \sigma_2$ 减小,即在 σ_3 侧向约束下, σ_1 、 σ_2 间的剪切 作用减小,"因素 3"使剪切强度参数增大;随着b的 增大, σ_2 增大,"因素 1"的 σ_2 侧向约束增大,使剪切 强度参数增大。综合 3种因素来看,在b值较小时, 剪切强度参数随着b的增大而增大。

当b继续增大, $\sigma_2 - \sigma_3$ 继续增大,"因素 2"使剪 切强度参数减小的影响也继续增大;而 $\sigma_1 - \sigma_2$ 继续 减小,在 σ_3 侧向约束下, σ_1 、 σ_2 间的剪切作用继续减 小,"因素 3"继续使剪切强度参数增大;"因素 1"中 的 σ_2 侧向约束继续增大,也是使剪切强度参数增大 的因素。当b增大到某一值时(如试验中b=0.5时),"因素 2"使剪切强度参数减小的影响与"因素 3"、"因素 1"使剪切强度参数增大的影响相同时,内 摩擦角达到最大值。

当b增大到较大值时(如试验中b=0.75时), $\sigma_2 - \sigma_3$ 增大到较大值, 而 $\sigma_1 - \sigma_2$ 则减小到较小值, 此 时"因素 2"使剪切强度参数减小的影响超过"因素 3"、"因素 1"使剪切强度参数增大的影响, 内摩擦角 较b=0.5时开始减小。

 $\stackrel{\text{\tiny def}}{=} b = 1 \text{ I} \text{ } , \sigma_1 = \sigma_2, \sigma_1 - \sigma_2 = 0, \sigma_2 - \sigma_3 = \sigma_1 - \sigma_3,$

"因素 3"不会对剪切强度参数产生影响;"因素 1"和 "因素 2"都是在 σ_1 侧向约束下的剪切作用 $\sigma_1 - \sigma_3$ 。 和b=0时相比, σ_1 的侧向约束要强于 σ_3 的侧向约 束,故 b=1时的剪切强度参数比 b=0时的大。

4 强度准则适用性研究

笔者曾根据粗粒土的三向加载试验得到粗粒土 应力不变量强度准则和角隅函数强度准则,将这些 强度准则与等 q、等 b 试验得到的试验结果进行比 较,以验证其对粗粒土三向卸载情况的适用性。

4.1 应力不变量强度准则

笔者曾提出应力不变量表示的粗粒土强度准则^[17],如式(1)所示。

$$\frac{I_1^3 + 4I_1I_2}{I_3} = k_{\rm f} \tag{1}$$

式中: I_1 、 I_2 、 I_3 分别为第一、第二、第三应力不变量, k_1 为常量,与材料性质有关。

对于粗粒土,假设凝聚力
$$c=0, f^{[17]}$$

$$k_{\rm f} = \frac{65 - 65 \sin \varphi_0 + 5 \sin \varphi_0 + 5 \sin \varphi_0}{1 - \sin \varphi_0 - \sin^2 \varphi_0 + \sin^3 \varphi_0} \quad (2)$$

式中: φ_0 为b=0时的内摩擦角。

Lade 和 Duncan 根据蒙特里砂试验结果,提出 Lade-Duncan 强度准则^[18],表达式为

$$\frac{I_1^3}{I_3} = k_{\rm f}$$
 (3)

式中

$$k_{\rm f} = \frac{(3 - \sin \varphi_0)^3}{1 - \sin \varphi_0 - \sin^2 \varphi_+ \, \sin^3 \varphi_0} \tag{4}$$

Matsuoka-Nakai 强度准则^[19]表达式为

$$\frac{I_1 I_2}{I_3} = k_{\rm f} \tag{5}$$

式中

$$k_{\rm f} = \frac{9 - \sin^2 \varphi_0}{1 - \sin^2 \varphi_0} \tag{6}$$

将上述 3 个强度准则表示成 φ_b 与 b 的形式,并 将 π 平面上的形状画出,与粗粒土三向卸载的试验 结果进行比较,如图 3 所示。粗粒土三向卸载试验 结果显示,b 值较小时,内摩擦角 φ_b 随着 b 的增大而减 增大;b 值较大时,内摩擦角 φ_b 随着 b 的增大而减 小。显然,3 个强度准则都能反映这一规律, Matsuoka-Nakai强度准则在 b 值较小时与试验结 果较为接近,粗粒土应力不变量强度准则在 b 值较 大时与试验结果较为接近。

- (b) π平面上的形状
- 图 3 应力不变量强度准则与等 q、等 b 试验结果比较图 Fig. 3 Comparison of the strength criterion of stress invariants and the q- and b- constant test results

4.2 角隅函数强度准则

土的三维强度准则通常可用角隅函数表示为

$$\left(\frac{q}{p}\right)_{\rm f} = M_{\rm c} \cdot g(b) \tag{7}$$

式中:M。为 b=0 时的破坏应力比。

笔者曾根据粗粒土的加载试验结果得到一个粗 粒土角隅函数强度准则^[20]

$$g(b) = \frac{1}{(1+k) - k \cdot (b-1)^2}$$
(8)

式中:k是与土的性质有关的参数,可表示为[21-22]

$$k = 1.462 \sin \varphi_0 - 0.523 \ 2 \tag{9}$$

图 4 为粗粒土角隅函数强度准则和等 q、等 b 试验结果,由图 4 可以看出,粗粒土角隅函数强度准则 与等 q、等 b 试验结果较为吻合。

图4 粗粒土角隅函数强度准则与等 q、等 b 试验结果比较图 Fig. 4 Comparison of the corner function strength criterion of coarse-grained soil and the q- and b- constant test results

5 结论

使用真三轴仪对粗粒土进行了等 q、等 b 三向等 量卸载试验,分析了三向卸载条件下粗粒土的强度 特性,研究了常用强度准则对卸载条件粗粒土的适 用性,得出以下结论:

1)不同 b 的粗粒土等 q、等 b 三向等量卸载条件 下,粗粒土的强度参数与中主应力系数 b 有关; b=0 时的内摩擦角 φ_b最小,破坏应力比 M_b最大;破坏应 力比 M_b随着 b 的增大而减小,且随着 b 的增大,减 小的梯度在逐渐减小;内摩擦角 φ_b在 b 值较小时随 着 b 的增大而增大,在 b 值较大时随着 b 的增大而 减小。

2)三向主应力 σ₁、σ₂、σ₃ 共同作用下的剪切强度 参数可以认为是受 3 个方向剪切的共同影响,进而 可以解释上述内摩擦角 φ_b随 b 的变化规律。

3) Matsuoka-Nakai 强度准则、粗粒土应力不变 量强度准则和 Lade-Duncan 强度准则这 3 个强度准 则都能反映内摩擦角 φ_b随 b 的变化规律, Matsuoka-Nakai 强度准则在 b 值较小时与试验结果较为接近, 粗粒土应力不变量强度准则在 b 值较大时与试验结 果较为接近。

4) 粗粒土角隅函数强度准则与等 q、等 b 试验结 果较为吻合。

致谢:

感谢江苏省高校"青蓝工程"、江苏省高校优秀 中青年教师和校长境外研修计划项目资助。

参考文献:

[1]卜建清, 王天亮. 冻融及细粒含量对粗粒土力学性质影响的试验研究[J]. 岩土工程学报, 2015, 37(4):
 608-614.

BU J Q, WANG T L. Influences of freeze-thaw and fines content on mechanical properties of coarse-grained soil [J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 608-614. (in Chinese)

 [2] ASGHARI E, TOLL D G, HAERI S M. Triaxial behaviour of a cemented gravely sand, Tehran alluvium
 [J]. Geotechnical and Geological Engineering, 2003, 21: 1-28. [3]彭凯,朱俊高,张丹,等.粗粒土与混凝土接触面特性
 单剪试验研究[J].岩石力学与工程学报,2010,29
 (9):1893-1900.

PENG K, ZHU J G, ZHANG D, et al. Study of mechanical behaviors of interface between coarsegrained soil and concrete by simple shear test [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(9): 1893-1900. (in Chinese)

- [4] WANG S H, DING J L, XU J, et al. Shear strength behavior of coarse-grained saline soils after freeze-thaw
 [J]. KSCE Journal of Civil Engineering, 2019, 23(6): 2437-2452.
- [5]黄茂松,姚仰平,尹振宇,等.土的基本特性及本构关系与强度理论[J].土木工程学报,2016,49(7):9-35.
 HUANG M S, YAO Y P, YIN Z Y, et al. An overview on elementary mechanical behaviors, constitutive modeling and failure criterion of soils [J]. China Civil Engineering Journal, 2016, 49(7): 9-35. (in Chinese)
- [6] AOUALI N, BENESSALAH I, ARAB A, et al. Shear strength response of fibre reinforced chlef (Algeria) silty sand: laboratory study [J]. Geotechnical and Geological Engineering, 2019, 37(2): 1047-1057.
- [7]徐肖峰,魏厚振,孟庆山,等.直剪剪切速率对粗粒土 强度与变形特性的影响[J].岩土工程学报,2013,35 (4):728-733.

XU X F, WEI H Z, MENG Q S, et al. Effects of shear rate on shear strength and deformation characteristics of coarse-grained soils in large-scale direct shear tests [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 728-733. (in Chinese)

- [8] CHEN A J, ZHANG J S. Strength and deformation characteristics of silty sand improved by gravel [J]. KSCE Journal of Civil Engineering, 2019, 23(2): 525-533.
- [9] ZAIMOGLU A S, YETIMOGLU T. Strength behavior of fine grained soil reinforced with randomly distributed polypropylene fibers [J]. Geotechnical and Geological Engineering, 2012, 30(1): 197-203.
- [10] ASLANI M, NAZARIAFSHAR J, GANJIAN N. Experimental study on shear strength of cohesive soils reinforced with stone columns [J]. Geotechnical and Geological Engineering, 2019, 37(3): 2165-2188.

- [11] DEGANUTTI A M, TECCA P R, GENEVOIS R. The measure of friction angles for different types of granular material [J]. Journal of Mountain Science, 2019, 16 (4): 769-777.
- [12] 蔡建,周健.土的卸载抗剪强度[J].岩土工程学报,2006,28(5):606-610.
 CAI J, ZHOU J. Unloading shear strength of soils [J].
 Chinese Journal of Geotechnical Engineering, 2006,28
 (5):606-610. (in Chinese)
- [13] 张玉,何晖,赵敏,等.平面应变条件下原状黄土侧向 卸载变形与强度特性分析[J].岩土力学,2017,38
 (5):1233-1242,1250.
 ZHANG Y, HE H, ZHAO M, et al. Analysis of lateral unloading deformation and strength

characteristics of intact loess under plain strain condition [J]. Rock and Soil Mechanics, 2017, 38(5): 1233-1242, 1250. (in Chinese)

- [14]何世秀,龙立华,杨雪强,等.黏性土卸载屈服特性试验研究[J].岩土力学,2018,29(Sup):449-452.
 HE S X, LONG L H, YANG X Q, et al. Experimental study of yield property of clayey soil under unloading [J]. Rock and Soil Mechanics, 2018, 29(Sup): 449-452. (in Chinese)
- [15] 王大雁,马巍,常小晓.K。固结后卸载状态下冻土应 力-应变特性研究[J].岩石力学与工程学报,2004,23
 (8):1252-1256.

WANG D Y, MA W, CHANG X X. Study on behavior of stress-strain for frozen soils subjected to K₀ consolidation by unloading triaxial shear tests [J].
Chinese Journal of Rock Mechanics and Engineering, 2004, 23(8): 1252-1256. (in Chinese)

[16] 李加贵,陈正汉,黄雪峰,等.Q₃黄土侧向卸荷时的细观结构演化及强度特性[J].岩土力学,2010,31(4):
 1084-1091.

LI JG, CHEN Z H, HUANG X F, et al. CT-triaxial shear tests on the meso-structure evolution and strength of unsaturated loess Q₃ during unloading confining pressure [J]. Rock and Soil Mechanics, 2010, 31(4): 1084-1091. (in Chinese)

[17] 施维成,朱俊高,刘汉龙.中主应力对砾石料变形和强度的影响[J].岩土工程学报,2008,30(10): 1449-1453.

SHI W C, ZHU J G, LIU H L. Influence of

intermediate principal stress on deformation and strength of gravel [J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1449-1453. (in Chinese)

- [18] LADE P V, DUNCAN J M. Elastoplastic stress-strain theory for cohesionless soil [J]. Journal of the Geotechnical Engineering Division, 1975, 101(GT10): 1037-1053.
- [19] TERUO N K, MATSUOKA H, OKUNO N, et al. True triaxial tests on normally consolidated clay and analysis of the observed shear behavior using elastoplastic constitutive models [J]. Soils and Foundations, 1986, 26(4): 67-78.
- [20] SHI W C, ZHU J G, CHIU C F, et al. Strength and deformation behaviour of coarse-grained soil by true triaxial tests [J]. Journal of Central South University of Technology, 2010, 17(5): 1095-1102.
- [21] 施维成,朱俊高,张博,等.粗粒土在平面应变条件下

的强度特性研究[J]. 岩土工程学报, 2011, 33(12): 1974-1979.

SHI W C, ZHU J G, ZHANG B, et al. Strength characteristics of coarse-grained soil under plane strain condition [J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1974-1979. (in Chinese)

[22] 施维成,朱俊高,代国忠,等.三向应力状态下粗粒土的强度准则研究[J].重庆交通大学学报(自然科学版),2017,36(1):64-67,116.

SHI W C, ZHU J G, DAI G Z, et al. Study on failure criterion of coarse-grained soil in three-dimensional stress state [J]. Journal of Chongqing Jiaotong University (Natural Science), 2017, 36(1): 64-67, 116. (in Chinese)

(编辑 王秀玲)