doi: 10.11835/j.issn.2096-6717.2019.176

开放科学(资源服务)标识码(OSID):

考虑地基土流变性的桩承式加筋土挡墙 拓宽路基数值模拟

李立1,郑俊杰1,曹文昭2,谢明星1

(1.华中科技大学 土木工程与力学学院,武汉 430074;2.中冶建筑研究总院(深圳)有限公司,广东 深圳 518055)

摘 要:为减小既有路基与拓宽路基的不均匀沉降,防止拓宽路基垮塌及路面破坏,针对流变性地 基土,提出采用桩承式加筋土挡墙对路基进行拓宽。基于杭甬高速公路拓宽工程,采用 FLAC^{3D}建 立软黏土地基上的桩承式加筋土挡墙路基拓宽数值模型,在既有路基通车不同年限后,将路基边坡 削坡至1:0.5,分层填筑拓宽路基并运行3a(产生流变变形),分析了拓宽前不同通车时间对挡墙的 水平位移和路基与地基的沉降量的影响,探讨了桩体布置位置及拓宽方式对路基结构的影响。结 果表明:桩承式加筋土挡墙路基拓宽结构具有良好的稳定性与承载性能;拓宽后既有路基出现明显 反坡现象,但路面坡比均小于道路功能性要求和结构性要求的容许值0.4%;利用桩承式加筋土挡 墙拓宽不仅能降低拓宽路基对既有路基的影响,还能减少拓宽路基路面沉降。 关键词:路基拓宽;加筋土挡墙;流变特性;数值模拟;变形特征

中图分类号:TU473.1 文献标志码:A 文章编号:2096-6717(2020)02-0065-08

Numerical analysis of widening subgrade using pile-supported reinforced-earth wall considering rheological characteristics of subsoil

Li Li¹, Zheng Junjie¹, Cao Wenzhao², Xie Mingxing¹

School of Civil Engineering and Mechanics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China;
 Central Research Institute of Building and Construction (Shenzhen) Co., Ltd, MCC Group,

Shenzhen 518055, Guangdong, P. R. China)

Abstract: In order to reduce the differential settlement between the new and old embankment, prevent the new embankment collapsing and the pavement destroying, pile-supported reinforced-earth wall is carried out to widen embankment on rheological soft-clay. The existing railway slope was cut to 1:0.5 after opening to traffic at different times. Then filling subgrade and operating it three years. The software FLAC^{3D} was used to build a model to analyse how the operation time can affect the movement of retaining wall and the settlement of embankment and foundation after widening the subgrade. Discussing how the

郑俊杰(通信作者),博士,教授,博士生导师,E-mail: zhengjj@hust.edu.cn。

Received: 2019-09-10

Zheng Junjie (corresponding author), PhD, professor, doctorial supervisor, E-mail: zhengjj@hust.edu.cn.

收稿日期:2019-09-10

基金项目:国家重点研发计划(2016YFC0800200);国家自然科学基金(51608316、51808243)

作者简介:李立(1997-),女,主要从事桩承式加筋路堤与流变地基土研究, E-mail: lili_1997@ hust. edu. cn。

Foundation items: National Key Research and Development Program (No. 2016YFC0800200); National Natural Science Foundation of China (No. 51608316,51808243)

Author brief:Li Li (1997-), main research interests: pile-supported reinforced embankment and rheological foundation soil, E-mail: lili_1997@hust.edu.cn.

position of the pile and the way of widening will affect this subgrade widening structure. The experimental results demonstrate that the pile-supported reinforced-earth wall has great stability and bearing capacity. After widening, the existing roadbed appears reverse slope phenomenon obviously, but the slope ratio is less than 0. 4% of the allowable road slope ratio of road functional requirements and structural requirements. Using pile-supported reinforced-earth wall can not only reduce the influence of widening subgrade, but also reduce the settlement of the widening subgrade.

Keywords: subgrade widening; pile-supported reinforced-earth wall; rheological behavior; numerical simulation; deformation characteristics

随着国民经济的发展,中国沿海软土地区 20 世 纪八九十年代建成的部分高速公路已无法满足日益 增长的交通量需求,急需进行拓宽改造。软土地区 高速公路路基拓宽面临的最为突出的技术难题是新 老路基的差异沉降变形,处理不善则易导致路面纵 向裂缝、道面起伏等病害。软土地基的流变特性是 影响拓宽路基工后沉降的主要因素之一。为研究土 体流变特性,不少学者提出了不同的流变模型[1] 与 理论^[2],其中,Cvisc 模型^[3]作为黏弹塑性模型,能较 好地反映土体压缩与剪切性能。除此之外,流变地 基土与路堤变形之间的关系也被广泛研究。Liu 等[4] 基于流变固结理论提出了不饱和地基土上路堤 施工过程中及施工后沉降的变形规律,并通过离心 试验和数值模拟验证了该理论计算的正确性。而路 基拓宽设计计算方法一般未考虑地基土流变的 影响。

相比传统路基拓宽方法,桩承式加筋土挡墙具 有占地面积小、地基处理费用低和填料需求少等特 点。具体措施为:将既有路基削坡至1:0.5 坡比后, 在削坡开辟的场地范围内设置竖向桩体,然后在桩 顶建造加筋土挡墙。路基拓宽结构大比例削坡不仅 能减少工程占地,也能减小拓宽路基自重在地基上 产生的水平推力,从而提高拓宽路基的稳定性。为 研究路基的变形破坏机理, Jin 等[5] 通过离心模型试 验对河流旁的路基拓宽进行分析,发现地基沉降根 据地基层条件和路堤形状表现出不同的模式。郑俊 杰等[6]通过理论分析改进了土拱效应及张拉膜效应 分析方法,得出桩承式加筋路堤荷载传递效率计算 公式。此外,学者们还通过数值模拟^[7]、室内试 验[8-9]、现场试验和理论分析,研究了不同桩长[10]、 桩间距、加筋方式[11]、筋体连接方式以及路基拓宽 方式等对软土地基上路基拓宽性能的影响。

笔者基于有限差分软件 FLAC^{3D},考虑地基土

流变的影响,对软土地基上桩承式加筋土挡墙拓宽 高速公路进行数值模拟,分析路基拓宽后的挡墙水 平位移以及地基与路基沉降,通过改变路基拓宽方 式和桩体设置位置,提出路基拓宽中桩承式加筋土 挡墙的合理参数,以期为该路基拓宽结构的工程应 用提供指导。

1 数值模型的建立

1.1 流变模型选择

对于软黏土体流变,选择采用 Cvisc 模型进行 模拟,该模型为 Burgers 模型的变体,除 Kelvin(开 尔文)体与 Maxwell(麦克斯维尔)体外,还引入了 Mohr-Coulomb 模型作为串联结构,以综合描述介 质黏弹塑性性质,具体模型组成如图 1 所示。

Kelvin 模型由牛顿体与虎克体并联而成,表明 在外力作用下该模型变形为弹性变形或黏性变形; Maxwell 模型为黏弹性体,由一个牛顿体和虎克体 串联而成,分别对应土体弹性变形和黏性变形; Mohr-Coulomb 模型则用以表征土体塑性力学行 为。模型一维蠕变方程为

 $\varepsilon(t) = \sigma \left[1/E_{\rm M} + 1/E_{\rm k} (1 - \mathrm{e}^{(E_{\rm k}/\eta_{\rm k})}) \right] \qquad (1)$

1.2 工程概况及参数选择

杭甬高速公路拓宽为中国首例高速公路拓宽实 例^[12],该段高速公路途经冲积平原及各大水系,地基 土软弱,软土厚度 20 m以上路段占全路段 76%。拓 宽试验段勘察结果显示,Ek165+800 段地表为 2.5 m 厚亚黏土硬壳层,其下分布地层依次为厚12.5 m淤泥 质亚黏土及厚 16 m 亚黏土,各层岩土体物理力学参数见表 1^[10]。路基拓宽方式为对称拓宽。

表1 各土体及材料参数

 Table 1
 Parameters of materials

材料	重度/	内摩擦	黏聚力/	泊松	弹性模	厚度
	$(kN \cdot m^{-3})$	角/(°)	kPa	比	量/MPa	$/\mathrm{m}$
亚黏土硬壳层	18	26.0	12.0	0.40	4.3	2.5
淤泥质亚黏土	18	13.5	36.0	0.42	3.0	12.5
亚黏土	18	19.9	40.2	0.35	6.3	5.0
垫层	22	30.0	0.0	0.32	50.0	0.6
既有路基	21	25.0	16.0	0.31	10.0	2.4
拓宽路基	21	20.0	13.0	0.32	9.0	2.4

由于路基结构为对称结构,为减小模拟时的计 算量,以路基中轴线为对称轴,选取实际路基的一半 进行模拟。图 2 为杭甬高速 Ek165+800 断面实际 工程路堤拓宽示意图,该断面老路堤处理方式为超 载预压,新路堤布置预应力薄壁管桩,并铺设 40 cm 厚垫层及一层土工格栅,监测点分别为地基表面 C1 (新老路堤结合处)、C2(新路堤中心)及 C3(新路堤 路肩)。结合表 2,利用 FLAC^{3D}对模型参数进行多 次调试^[13],将模拟沉降所得曲线与实际沉降曲线进 行对比,得到考虑地基土流变特性的监测点计算沉 降曲线 与实测沉降曲线对比如图 3 所示,此时 Maxwell 与 Kelvin 参数见表 3。

Fig. 2 Diagram of embankment widening in practical engineering

表 2 各参数对流变特性的影响

Table 2	Impact of	parameters	on	rheological	properties
---------	-----------	------------	----	-------------	------------

流变特性	$E_{ m m}$	$\eta_{ m m}$	$E_{\rm k}$	$\eta_{ m k}$
瞬时应变量	负相关			
起始蠕变量		负相关	负相关	
起始蠕变率		负相关		负相关
稳定蠕变率		负相关		

表 3 各土层流变参数

Table 3 Rheological parameters of each layer

流变参数	$E_{\rm k}$	${E}_{ m m}$	$\eta_{ m k}$	$\eta_{ m m}$
亚黏土硬壳层	8.9×10 ⁷	8.9×10 ⁷	1.9×10^{9}	8.7×10 ¹¹
淤泥质亚黏土	6.8×10^{7}	6.8×107	7.7 $\times 10^{8}$	3.3×10 ¹¹
亚黏土	1.8×10^{8}	2.0×10 ⁷	3.9×10 ⁹	4.4×10 ¹¹

由图 3 可知,在实际工程填筑期间,地基土先快 速固结,而后长时间持续流变,利用 FLAC^{3D}将地基 单元的变形拟合为地基固结,得到的考虑地基流变 特性的沉降曲线与实测结果拟合较好,沉降量随时 间变化总体趋势一致,路堤填筑 200 d 后,三点沉降 计算值依次为 21.64、19.22、18.60 mm,与实测数值 25.92、23.07、20.03 mm 的误差 仅为 16.51%、 16.69%和 7.14%。以上分析表明,考虑地基土流 变特性的数值模拟结果能较好地反映软土地基上拓 宽路基的实际沉降量及变化趋势,可为相关工程的 设计施工提供指导。

1.3 桩承式加筋土挡墙建模

在路堤参数的基础上,采用桩承式加筋土挡墙 对路堤进行拓宽,所选区域模型地基宽 30 m、深 20 m,褥垫层厚度 0.6 m,挡墙高 H 为 3 m,拓宽前后 所有参数均保持不变。拓宽后路基宽由 10 m 增加 至 16 m,既有路基边坡比由 1:1.5 削坡至 1:0.5,拓 宽路基边缘以 0.5 m 厚垂直挡墙约束。采用结构单 元桩单元(pilesel)、壳单元(shell)以及土工格栅单 元(geogrid)分别对桩体、桩帽以及格栅进行模拟, 并将桩单元与壳单元手动连接,形成加帽桩体,其 中,桩长 15 m、桩间距 2 m,桩帽尺寸 1 m×1 m;既 有路基格栅铺设一层,距底面 0.3 m,拓宽后于每层 拓宽路基顶部分别铺设土工格栅共 4 层。拓宽工程 示意图如图 4 所示。

Fig. 4 Model of foundation and subgrade

路基拓宽过程具体模拟步骤:

 1)在地基土流变情况下模拟既有路基填筑,每 层填筑时间为7d,全部填筑完成后运行相应时间以 模拟既有路基与拓宽路基不同施工间隔年数;

2)将除褥垫层外的既有路基边坡削坡至1:0.5 坡比,并静置固结一个月;

3) 拓宽路基底部受载地基加建加帽桩体;

4)分层按要求填筑拓宽路基,并在每层拓宽路 基顶部铺设一层土工格栅与末端挡墙相连;

5) 拓宽路基填筑完成后,继续运行3a,记录并 保存相关数据。

2 计算结果分析

2.1 挡墙位移

图 5 为路基拓宽完成时与拓宽 3 a 后不同施工 间隔时间的挡墙水平位移。挡墙上各点水平位移随 施工间隔时间变化趋势相同。当施工间隔时间为 8 a 时,新路堤填筑完成时挡墙水平位移最大点位于 据墙底 0.9 m 处,墙面出现"鼓肚"现象,这是路基自 重以及土体黏聚力引起的。拓宽 3 a 后,随着挡墙 高度增加,水平位移逐渐增大,最大值位于墙顶,达 10.42 mm,小于规范规定 15 mm(0.5%H)^[14],因 此,采用桩承式加筋土挡墙结构对路基进行拓宽时, 挡墙结构较稳定,不易发生垮塌;随着施工间隔时间 由 2 a 增加至 10 a,墙顶最大水平位移依次为12.21、 11.81、11.16、10.42、9.73 mm,逐渐减小,表明随着 施工间隔时间的增加,地基土在既有路堤荷载下流 变持续发展,土体逐渐稳定,拓宽后挡墙稳定性 提高。

2.2 地基顶面位移

图 6 为路基拓宽前后地基顶面沉降曲线。随着 既有路基在拓宽前通车时间逐渐增加,地基各点沉

Fig. 5 Horizontal displacement of retaining wall

降均增大,表明随既有路基通车时间增加,地基土持续流变。拓宽3a后地基顶面沉降量变化趋势刚好相反,既有路基通车时间越长,拓宽后地基沉降越小,此时拓宽地基越稳定;地基顶面中心点沉降量减小值依次为2.74、2.43、2.25、2.00 mm,表明随着拓宽前通车时间增加,地基土流变速率减慢,通车时间的增加对改善地基沉降的能力逐渐减弱。当既有路基与拓宽路基施工间隔时间为8a时,拓宽后地基在拓宽路基自重作用下继续产生较大沉降,新老路基结合处所受垂直附加应力较大,使得该点沉降量最大,达28.29 mm,远小于规范规定的工后容许沉降300 mm^[15]。拓宽前后,地基顶面桩顶沉降均明显小于桩间土沉降,表明桩体的设置能明显减小地基顶面沉降,进一步提高地基稳定性。

Fig. 6 Settlement of the surface of foundation before widening

图 7 为施工间隔时间 8 a 时,路基开始拓宽后地 基顶面各典型点沉降曲线。既有路基削坡后,除坡 脚处地基土初期会产生 1.18 mm 高的拱土外,其余 各点在拓宽路基填筑期间沉降均显著增加,远离路 基中心方向,地基顶面各点最大沉降速率依次为 3.08、3.58、2.05、5.12 和 6.26 mm/月;施工 60 d 后,最大平均沉降速率仅 0.85 mm/月;200 d 后,5 点沉降量依次为 6.30、5.36、5.03、8.52、10.27 mm, 拓宽路基坡脚处沉降量最大。这是由于既有路基削 坡后,削坡处地基土将产生卸荷回弹,此时既有路基 与拓宽路基结合处为薄弱点,易产生较大变形;拓宽 填筑期间,压缩性较低的拓宽路基处地基土在荷载 作用下发生沉降,加上挡墙重度大于路基填土重度, 使坡脚处地基土以较大沉降速率持续沉降较长时 间,最终沉降量大于相邻土体;拓宽完成后一段时 间,拓宽路基附加应力产生的变形基本完成,土体沉 降由流变控制,地基土沉降速率开始变缓。

2.3 路基顶面位移

图 8(a)为拓宽前路基顶面沉降曲线。随着拓宽前通车时间增加,路基顶面各点沉降均增大,最大值位于路基中心,朝路肩方向沉降逐渐减小,当既有路基通车运行时间由 2 a 逐渐增加至 10 a 时,最大沉降量依次为 38.76、56.59、72.76、87.63、101.25 mm,均小于该高速公路拓宽工程总沉降量变形控制标准 150 mm^[4];横坡比逐渐增大,依次为0.031%、0.039%、0.047%、0.056%和0.065%,表明地基土流变将增大路基不均匀沉降,填筑路基时应考虑适当填高路基中心。

图 8(b)为拓宽 3 a 后的路基顶面沉降量。不同 施工时间间隔下路基顶面沉降曲线变化一致,远离 路基中心方向,既有路基顶面沉降量逐渐增加,在拓 宽路基与既有路基交界处达到最大后沉降量明显减 小,最后在拓宽路基坡肩处达到最小。当施工间隔 时间每增加 2 a,既有路基与拓宽路基交界处沉降量 依次减小 2.53、2.10、1.87、1.59 mm,表明施工间隔 时间的增加对改善路基顶面沉降的能力逐渐减弱。 同时,路基顶面沉降量标准差依次为 0.96、0.90、 0.88、0.85 和 0.83 mm,这是由于拓宽前地基土流 变速率随通车时间增加而逐渐减慢,地基土稳定性 增强,使得拓宽后路基差异沉降减小。因此,增加拓 宽前通车时间能减少路基沉降量并降低路基不均匀 沉降。

Fig. 8 Settlement of the top of embankment

拓宽3a后,以施工间隔时间8a为例,路基顶 面最大沉降量为23.82 mm,远小于设计标准所规定 的工后容许沉降150 mm^[10];工后最大差异沉降为 4.43 mm,小于设计标准规定的30 mm;拓宽后既有 路基横坡比出现明显反坡现象,坡比大小为 0.017%,拓宽路基坡比为0.074%,均小于道路功 能性要求和结构性要求容许的路面坡比0.4%。表 明利用桩承式加筋土挡墙这一结构对路基进行拓 宽,可减小拓宽后既有路基与拓宽路基的不均匀沉 降,降低桥头跳车及路面破坏的可能。既有路基与 拓宽路基交界处因不均匀沉降而产生一明显凹槽, 在路基通车后易发生积水,应加强排水措施。

上述分析表明:增加拓宽前通车时间能减少路 基沉降量并降低路基不均匀沉降;桩承式加筋土挡 墙路基拓宽结构具有良好的承载性能,地基顶面工 后差异沉降较小,将减小路基不均匀沉降而导致的 桥头跳车及路面破坏的可能。

当施工间隔时间为 8 a 时,路基拓宽完成后路 基顶面典型点沉降随时间的变化曲线如图 9 所示。 由于流变土体的蠕变特性,路基拓宽完成后的较长 一段时间内,路基表面仍会继续产生沉降。填筑完 成后一段时间,F 点(即新老路堤交界处)沉降量最 大,工后 150 d 达 10.03 mm;该点拓宽完成后 20 d 内沉降速率最大,平均为 0.26 mm/d,20 d 后,拓宽 路基附加应力产生的变形基本完成,流变持续发生, 沉降速率仅 0.65 mm/d,小于大多数高速公路采取 的 0.2 mm/d 的路面铺筑时间标准^[16],此时可进行 面层施工。

Fig. 9 Variation curve of the typical points after widening

3 参数分析

3.1 拓宽方式

分别利用桩承式加筋路堤与桩承式加筋土挡墙 拓宽,拓宽方式如图 10 所示。图 11 为两种拓宽方 式下路基顶面沉降曲线图。利用桩承式加筋路堤拓 宽时,路基沉降量最大值仍位于路基交界处,达 24.51 mm,因此,无论用何种拓宽方式对路基进行 拓宽,均应加强路基交界处沉降监控,防止该处产生 较大凹陷,影响路基通车。利用桩承式加筋土挡墙 拓宽路基时,既有路基与拓宽路基顶面沉降明显小 于利用桩承式加筋路堤拓宽路基时,路基中心沉降 量减小了 1.85 mm,拓宽路基路肩减小了 0.97 mm,表明利用桩承式加筋土挡墙拓宽不仅能降低拓 宽路基对既有路基的影响,还能减少拓宽路基顶面 沉降。

3.2 桩体布置

分别模拟既有路基与拓宽路基均无桩(UU)、既 有路基有桩:拓宽路基无桩(PU)以及既有路基无 桩、拓宽路基有桩(UP)3种情况,与既有路基与拓 宽路基均有桩(PP)时进行对比,桩体布置如图 12 所示。

Fig. 11 Settlement of the surface of embankment

Fig. 12 Position of the pile

图 13 为路基顶面沉降曲线图。由图 13 可以看 出:UU工况下,路基顶面各点沉降明显大于其他工 况,表明设置桩基能显著减少路基沉降,其沉降曲线 与 PP工况变化一致,路基结合处沉降量最大,且既 有路基与拓宽路基路面沉降差异不大。UP工况 下,既有路基沉降明显大于拓宽路基,路基结合处沉 降量最大,沿拓宽路基路肩方向沉降逐渐减小,路肩 处为路基表面最高点。PU工况下,拓宽路基沉降 曲线则完全相反,距路基中心越远,拓宽路基沉降量 越大,路肩处为路基表面最低点。UU、UP、PU以 及 PP4 种情况下,路基沉降标准差依次为 1.75、 3.06、1.56、0.83 mm。由此可知:若既有路基为桩 承式路基,拓宽路基设桩能有效减少路基不均匀沉 降;若拓宽前地基土流变仍未收敛且既有路基未设 桩,拓宽路基设桩反而可能增加路基不均匀沉降,此 时可考虑在填筑拓宽路基时适当增加横坡比。

Fig. 13 Settlement of the surface of embankment

4 结论

1)随着施工间隔时间增加,地基土在既有路堤 荷载下流变持续发展,土体逐渐稳定,拓宽后拓宽地 基和挡墙稳定性提高,路基不均匀沉降降低,表明 Cvisc 模型能较好地反映地基土减速蠕变过程。

2)桩承式加筋土挡墙具有很好的稳定性与承载 性能,能有效改善软黏性地基土流变产生的大变形, 也可减小拓宽后既有路基和拓宽路基的不均匀沉 降,降低桥头跳车及路面破坏的可能。

3)新老路基均设桩,能有效减少路基不均匀沉降,若拓宽前地基土流变仍未收敛且既有路基未设桩,可考虑在填筑拓宽路基时适当增加横坡比。

4)利用桩承式加筋土挡墙拓宽不仅能降低拓宽 路基对既有路基的影响,还能减少拓宽路基顶面 沉降。

参考文献:

- [1] LIINGAARD M, AUGUSTESEN A, LADE P V. Characterization of models for time-dependent behavior of soils [J]. International Journal of Geomechanics, 2004, 4(3): 157-177.
- [2]李素华,周健,殷建华,等.桩-土承载性能剪切流变分 析新理论[J].岩石力学与工程学报,2008,27(Sup1): 3186-3190.

LIS H, ZHOU J, YIN J H, et al. New theory for shear rheological analysis of pile's bearing performance [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(Sup1): 3186-3190. (in Chinese)

[3] 江宗斌,姜谙男,石静.基于 Cvisc 蠕变模型的 CFG 桩 路基施工沉降分析[J]. 岩土工程学报,2013,35(2): 346-351. JIANG Z B, JIANG A N, SHI J. Subgrade settlement using CFG piles based on Cvisc creep model [J]. Chinese Journal of Geotechnical Engineering, 2013, 35 (2): 346-351. (in Chinese)

- [4] LIU J X, LIU W, LIU P, et al. Preliminary research on the theory and application of unsaturated Red-layers embankment settlement based on rheology and consolidation theory [J]. Environmental Earth Sciences, 2016, 75(6): 503.
- [5] JIN S W, CHOO Y W, KIM Y M, et al. Centrifuge modeling of differential settlement and levee stability due to staged construction of enlarged embankment [J]. KSCE Journal of Civil Engineering, 2014, 18(4): 1036-1046.
- [6]郑俊杰,罗先国,付海平,等.基于 H&R 土拱模型的 桩承式加筋路堤分析[J].华中科技大学学报(自然科 学版),2019,47(1):50-54.
 ZHENG J J, LUO X L, FU H P, et al. Analysis of geosynthetic-reinforced pile-supported embankment based on H&R soil arching model [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019, 47(1): 50-54. (in Chinese)
- [7] WEI Y G, ZHOU W F, LI Y Y. Management research on treatment measures for differential settlement of Tianjin-Binhai expressway's widened subgrade [J].
 Applied Mechanics and Materials, 2014, 505/506: 28-34.
- [8] YU H, WANG Y M, ZOU C, et al. Study on subgrade settlement characteristics after widening project of highway built on weak foundation [J]. Arabian Journal for Science and Engineering, 2017, 42(9): 3723-3732.
- [9] WENG X L, ZHANG L J, WANG W. Research on the treatment for water damage to widened subgrade of collapsible loess based on centrifuge [J]. Applied Mechanics and Materials, 2011, 99/100: 821-825.
- [10] 刘观仕, 孔令伟, 李雄威, 等. 高速公路软土路基拓宽 粉喷桩处治方案分析与验证[J]. 岩石力学与工程学报, 2008, 27(2): 309-315.

LIU G S, KONG L W, LI X W, et al. Analysis of treatment scheme for soft foundation in expressway widening project and its verification [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27 (2): 309-315. (in Chinese)

- [11] HUANG X M, WANG H. Comparison between responses of reinforced and unreinforced embankments due to road widening [J]. Journal of Central South University of Technology, 2009, 16(5): 857-864.
- [12] 刘观仕, 孔令伟, 丁锋, 等. 高速公路扩建工程软基拓 宽的沉降监测与分析[J]. 岩土力学, 2007, 28(2): 331-335.

LIU G S, KONG L W, DING F, et al. Settlement monitoring and analysis for soft foundation of an expressway widening project [J]. Rock and Soil Mechanics, 2007, 28(2): 331-335. (in Chinese)

[13] 杨振伟,金爱兵,周喻,等.伯格斯模型参数调试与岩 石蠕变特性颗粒流分析[J].岩土力学,2015,36(1): 240-247.

YANG Z W, JIN A B, ZHOU Y, et al. Parametric analysis of Burgers model and creep properties of rock with particle flow code [J]. Rock and Soil Mechanics, 2015, 36(1): 240-247. (in Chinese)

[14] 公路加筋土工程施工技术规范: JTJ 035-91 [S]. 北京:

人民交通出版社, 1992.

Technical specifications for construction of highway reinforced earth engineering: JTJ 035-91[S]. Beijing: China Communication Press, 1992. (in Chinese)

[15] 公路路基设计规范: JTGD30-2015 [S]. 北京: 人民交 通出版社, 2007.

Specifications for design of highway subgrades: JTGD30-2015 [S]. Beijing: China Communication Press, 2007. (in Chinese)

[16] 张留俊, 王福胜, 刘建都. 高速公路软土地基处理技术: 试验研究与工程实例 [M]. 北京: 人民交通出版社, 2002.

ZHANG L J, WANG F S, LIU J D. Soft soil foundation treatment technology of expressway-test research and engineering example [M]. Beijing: China Communications Press, 2002. (in Chinese)

(编辑 胡玲)