doi: 10.11835/j.issn.2096-6717.2020.017

开放科学(资源服务)标识码(OSID):

基于子结构中弯曲波的拉索索力识别方法

肖军^{1,2},代洋³,张永水³

(1. 中交第二公路工程局有限公司,西安 710065;2. 长安大学 公路学院,西安 710064;
 3. 重庆交通大学 土木工程学院,重庆 400074)

摘 要:以轴向受拉修正 Timoshenko 梁模型为理论依托,从波的角度对拉索子结构的动力特性进行研究,分别讨论了近场波与行波,发现距离梁端一定距离或较高的频段可不考虑近场波的影响。 基于梁结构中的行波传播特性,通过3个测点的频域响应,利用最小二乘法拟合得到波分量系数, 再以拟合残差最小为目标进行拉索索力和抗弯刚度的识别。通过拉索振动的数值模拟实验验证了 方法的精确性,索力与抗弯刚度值识别误差均不超过1%。相比传统的频率法,该方法基于子结构 索力识别,不受减震器和边界条件的影响,而且可基于识别的子索段索力,通过静力分析反推拉索 各个位置的索力,同时,在各频率采样点处均能识别出相应索力,减小了外部干扰对索力识别的 影响。

关键词:拉索子结构;弯曲波;最小二乘法;索力识别;抗弯刚度识别;嗓音 中图分类号:U441 文献标志码:A 文章编号:2096-6717(2020)04-0135-09

Cable force identification method based on bending wave in substructure

Xiao Jun^{1,2}, Dai Yang³, Zhang Yongshui³

(1. CCCC Second Highway Engineering Co. Ltd., Xi'an 710065, P. R. China; 2. School of Highway, Chang'an University, Xi'an 710064, P. R. China; 3. School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, P. R. China)

Abstract: Based on the theory of the axial tension modified Timoshenko beam model, this paper studies the dynamic characteristics of the cable substructure from the perspective of waves, and discusses the near-field wave and traveling wave separately. The effects of near-field waves can be ignored when it near the beam end or at high frequencies. Based on the travelling wave propagation characteristics in the beam structure, the wave component coefficients were obtained by the least square fitting method, and then the cable force and bending stiffness were identified with the aim of minimizing the fitting residual. Subsequently, the accuracy of the method was verified by numerical simulation experiments of cable vibration, and the error of cable force identification did not exceed 1%. Compared with the traditional frequency method, this method is based on the substructure cable force identification, which is not affected by shock absorbers and boundary conditions. Furthermore, the identified sub-cable segment cable forces can be used to inversely push the cable forces at various locations through static analysis. At the same time, the corresponding cable

收稿日期:2019-11-11

基金项目:中国交建特大科技研发项目(2019-ZJKJ-07);湖南省交通运输厅科技项目(201615)

作者简介:肖军(1987-),男,博士(后),主要从事桥梁施工监控及桥梁加固研究,E-mail: sunflower001@foxmail.com。 Received:2019-11-11

Foundation items: Science and Technology Specical Major Project of CCCC (No. 2019-ZJKJ-07); Hunan Provincial Transportation Science and Technology Project(No. 201615).

Author brief: Xiao Jun (1987-), PhD, main research interests: bridge construction monitoring and bridge reinforcement, E-mail: sunflower001@foxmail.com.

force can be identified at each frequency sampling point, reducing the impact of external interference on cable force identification.

Keywords: cable substructure; bending wave; least square method; cable force estimation; bending stiffness identification; noise

拉索是斜拉桥的重要受力构件,其索力的准确 识别在桥梁施工与运营阶段十分重要。工程中使用 最为广泛的是动测法,又称频率法[1]。频率法依赖 于对拉索振动频率的识别以及拉索频率与索力的换 算关系,其精度很大程度上取决于频率与索力的换 算关系。早期利用弦理论研究拉索振动,忽略了抗 弯刚度,并且假设边界条件为两端铰接,与实际情况 存在较大偏差,因而识别结果并不理想^[2-3]。由于频 率法本质是利用振动频率对索力进行识别,抗弯刚 度、边界条件以及垂度对识别精度影响都比较显著。 由于对拉索抗弯刚度的计算缺乏精确的理论公式, 通常只是给出合理的取值范围,导致拉索索力识别 时其抗弯刚度反而成为了待识别对象[4-5];文献[6-97对不同边界条件的情况做了大量分析,用弹簧刚 度模拟边界条件在静力分析中可行,但对于动力分 析,其动态边界的刚度显然依赖于其动力特性,因 而,以截断性边界模拟拉索边界不合理;同时,拉索 的垂度使得拉索的索力是沿索长分布的函数,并非 固定值,传统索力识别方法无法只识别索力的平均 值。鉴于频率法依然存在的一些问题,部分学者转 向了利用行波进行索力识别的研究, McDaniel 等^[10] 推导了梁的动力响应通解,不直接通过边界条件建 立特征方程求出待定系数,而是用不同测点的频响 反求待定系数,当测点数多于待定系数时,将有拟合 误差,通过拟合误差最小化实现了梁的波数识别。 Maes 等^[11]关注到梁的轴力与波数具有一一对应的 关系,因此,将波数识别推广应用于梁杆轴力识别, 该方法在频域中产生大量识别点集,提供了更大信 息量,提升了稳定性。张松涵[12]提出了一种索力识 别方法理论,利用选取的子索段的5个测点对波分 量系数进行最小二乘求解,以波分量系数的拟合残 差最小作为索力识别的判定标准,由于其代入索力 识别的波分量仍采用了 Euler-Bernoulli 梁模型的波 数解,显然在高频响应中精度无法满足。笔者对梁 单元进行了修正,解决了 Euler-Bernoulli 梁模型对 短粗梁以及高频率段的不适用性,避免了 Timoshenko 梁模型存在的截断频率、两个波速系的 问题,对梁模型中4种波的特性进行探讨,认为近场 波由锚固端向梁中呈指数衰减只存在梁锚固局部位

置处,并且随着频率的增加衰减得越快,忽略近场波 后,通过3个测点的频域响应采用通过最小二乘法 拟合得到波分量系数,以拟合残差最小为目标进行 索力和抗弯刚度的识别,最后,通过拉索振动的数值 模拟实验验证了方法的精确性。

1 拉索振动频散关系

1.1 修正 Timoshenko 梁理论

Doyle^[13]推导了 Euler-Bernoulli 梁理论的频散 关系,Lee 等^[14]在此基础上考虑了剪切变形和轴向 张力,推导了 Timoshenko 梁理论下的振动频散关 系,但 Euler-Bernoulli 梁模型由于忽略了剪切变形, 以致在高频段的误差较大;而 Timoshenko 梁理论 存在截止频率,使得其具有两个波速系,这不符合实 际情况,其实,在 Timoshenko 梁理论的推导中,未 引入剪切变形所引起的转动惯量,一旦考虑之后,便 可消除截止频率,只留下一个波速系,并且增加了结 构振动高频响应的精确性^[15]。

拉索微元段引入剪切变形所引起的转动惯量 后,平衡状态如图1所示。

Fig. 1 Cable balance diagram

根据图 1 建立拉索微段平衡方程组 $\frac{\partial Q_{y}}{\partial x} dx + \frac{\partial}{\partial x} \left[N_{x} \frac{\partial y(x,t)}{\partial x} \right] dx - \rho A \frac{\partial^{2} y(x,t)}{\partial t^{2}} dx = 0$ $\frac{\partial M_{z}}{\partial x} dx + Q_{y} dx - \rho I \frac{\partial^{2} \eta(x,t)}{\partial t^{2}} dx - \rho I \frac{\partial^{2} \lambda(x,t)}{\partial t^{2}} dx = 0$ (1)

式中:y(x,t)为拉索的横向位移; $\eta(x,t)$ 、 $\lambda(x,t)$ 分别为拉索弯曲和剪切引起的截面转角。

由 Timoshenko 梁^[16]可知,剪力、弯矩、拉索横 向位移存在以下关系

$$Q_{y} = \kappa GA\left(\frac{\partial y}{\partial x} - \theta\right) \tag{2}$$

$$M_z = EI \frac{\partial \theta}{\partial r} \tag{3}$$

式中: κ 为截面的剪切变形系数, 拉索的圆形截面可 按式(4)计算; G 为材料的剪切模量, 对于各项同性 的材料, G 可以按式(5)计算。

$$\kappa = \frac{6(1+\mu)^2}{8\mu^2 + 14\mu + 7} \tag{4}$$

$$G = \frac{E}{2(1+\mu)} \tag{5}$$

将式(2)~式(5)代入式(1),并进行 Fourier 变换,可得到拉索在频域中的横向振动微分方程

$$\kappa GA \left[\frac{\partial \lambda(x,\omega)}{\partial x} \right] + N_x \frac{\partial^2 Y(x,\omega)}{\partial x^2} + \omega^2 \rho AY(x,\omega) = 0$$

$$EI \frac{\partial^2 \bar{\eta}(x,\omega)}{\partial x^2} + \kappa GA [\bar{\lambda}(x,\omega)] + \omega^2 \rho I \bar{\eta}(x,\omega) + \omega^2 \rho I \bar{\lambda}(x,\omega) = 0$$
(6)

式中: $\eta(x,\omega)$ 为 $\eta(x,t)$ 的 Fourier 变换; $\overline{\lambda}(x,\omega)$ 为 $\lambda(x,t)$ 的 Fourier 变换。

$$\bar{\eta}(x,\omega) = \int_{-\infty}^{+\infty} \eta(x,t) \exp(-j\omega t) dt \qquad (7)$$

$$\bar{\lambda}(x,\omega) = \int_{-\infty}^{+\infty} \lambda(x,t) \exp(-j\omega t) dt \qquad (8)$$

并且,

$$\frac{y(x,t)}{\partial x} - \eta(x,t) - \lambda(x,t) = 0$$
(9)

经 Fourier 变换后可得

$$\frac{Y(x,\omega)}{\partial x} - \bar{\eta}(x,\omega) - \bar{\lambda}(x,\omega) = 0 \qquad (10)$$

假设式(6)的解为 $Y(x,\omega) = C\exp(kx), \eta(x,\omega) = D\exp(kx), \overline{\lambda}(x,\omega) = E\exp(kx), 代人整理后可得到$ 矩阵方程

$$\begin{bmatrix} N_x k^2 + \omega^2 \rho A & 0 & \kappa GAk \\ 0 & EIk^2 + \omega^2 \rho I & \kappa GA + \omega^2 \rho I \\ k & -1 & -1 \end{bmatrix} \cdot \begin{bmatrix} C \\ D \\ E \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(11)

要使式(11)存在非零解,则左端系数矩阵的行 列式必然为 0,可写成

$$EI(\kappa GA + N_x)k^4 + (-N_x\kappa GA + \omega^2\rho AEI +$$

 $\omega^2 \rho I \kappa G A \, k^2 - \omega^2 \rho A \kappa G A = 0 \qquad (12)$

对特征方程式(12)求解,便可得到修正 Timoshenko梁的频散关系

$$k_{1,2,3,4} = \pm \sqrt{\frac{-\beta \pm \sqrt{\beta^2 - 4\alpha\gamma}}{2\alpha}} \qquad (13)$$

式中: $\alpha = EI(\kappa GA + N_x); \beta = -N_x \kappa GA + \omega^2 \rho AEI + \omega^2 \rho I \kappa GA; \gamma = -\omega^2 \rho A \kappa GA$ 。

1.2 数值算例

基于梁理论的推导,结合一数值算例进一步探 讨修正 Timoshenko 梁、Euler-Bernoulli 梁 与 Timoshenko 梁理论的关系与区别。

对于一段连续均匀、等截面并且不考虑其长度 的梁结构,假设其材料参数为:弹性模量 E = 200GPa,泊松比 $\mu = 0.3$,由式(4)算出截面剪切变形系 数 $\kappa = 0.86$,由式(5)算出剪切模量 G = 76.92 GPa, 密度 $\rho = 7~800$ kg/m³;几何参数:圆形截面半径为 0.04 m,截面面积 A = 0.005 m²,截面惯性矩为 $I_{zz} = 2 \times 10^{-6}$ m⁴,对梁施加的初张力假设为 $N_x =$ 600 MPa×0.005 m² = 3 000 kN。

图 2 给出了 3 种梁单元波数解与频率的关系, 其中,实部代表近场波,虚部代表行波。在频率较低 的情况,3 种梁理论的频散关系相差很小,但在较高 频段,Euler-Bernoulli 梁的近场波数解存在无限增 大的趋势,这显然是忽略了剪切变形和抗弯刚度造 成的。而对于 Timoshenko 梁存在的截断频率,其 实质是由于只考虑了弯曲变形产生的抗弯刚度,使 得 波 数 解 中 出 现 了 频 率 的 四 次 方,而 修 正 Timoshenko 梁额外考虑了剪切变形引起的转动惯 量,恰好抵消掉了该项,因而避免了截断频率的 产生^[15]。

2 拉索动力响应的波分量分解

2.1 波分量理论

式(13)给出了修正 Timoshenko 梁的振动频散 关系,根据叠加原理可以得到忽略垂度的拉索频域 横向自由振动通解(后文波数解均依赖修正 Timoshenko梁理论),即

 $Y(x,\omega) = C_1 \exp(k_1 x) + C_2 \exp(k_2 x) +$

$$C_3 \exp(k_3 x) + C_4 \exp(k_4 x) \tag{14}$$

拉索的频域横向自由振动为 4 项波分量 $\exp(k_1x)$ 、 $\exp(k_2x)$ 、 $\exp(k_3x)$ 、 $\exp(k_4x)$ 的叠加,对 4 种波分 量做下列定义:

 $C_1(\omega)\exp(k_1x)[Re(k_1) < 0, \operatorname{Im}(k_1) = 0]$ 为近 场波,沿 x 正方向衰减;

 $C_2(\omega)\exp(k_2x)[Re(k_2)<0, Im(k_2)=0]$ 为近 场波,沿 x 负方向衰减;

 $C_{3}(\omega)\exp(k_{3}x)[Re(k_{3})=0,\operatorname{Im}(k_{3})<0]$

Fig. 2 Wave number-frequence diagram

波,沿 x 正方向传递;

 $C_4(\omega)\exp(k_4x)[Re(k_4)=0, \operatorname{Im}(k_4)<0]$ 为行 波,沿 x 负方向传递。

假设拉索两端为固定约束,对式(14)代入边界 条件,可得到方程

$$\boldsymbol{H} \boldsymbol{\cdot} \boldsymbol{C} = \boldsymbol{0} \tag{15}$$

式中

$$\boldsymbol{C} = \{ C_1 \quad C_2 \quad C_3 \quad C_4 \quad \}^{\mathrm{T}}$$
(16)
$$\boldsymbol{H} =$$

$$\begin{cases} 1 & 1 & 1 & 1 \\ k_1 & k_2 & k_3 & k_4 \\ \exp(k_1 L) & \exp(k_2 L) & \exp(k_3 L) & \exp(k_4 L) \\ k_1 \exp(k_1 L) & k_2 \exp(k_2 L) & k_3 \exp(k_3 L) & k_4 \exp(k_4 L) \end{cases}$$

同样,要使拉索位移存在非0解,则系数矩阵行 列式必为0,即 $\boldsymbol{\omega} = \{\omega_n \mid |H(\omega_n)|=0\},因而,可以$ 得到结构的模态分解表达式

$$\boldsymbol{\omega} = \{ \boldsymbol{\omega}_1 \quad \boldsymbol{\omega}_2 \quad \dots \quad \boldsymbol{\omega}_n \quad \dots \}^{\mathrm{T}} \}$$

$$Y(x, \boldsymbol{\omega}_n) = \sum_{i=1}^{4} C_i(\boldsymbol{\omega}_n) \exp(k_i x) \}$$
(18)

2.2 数值算例

如图 3 所示,一连续、均匀、长度为 10 m 的两端 固结梁,假设其材料参数:弹性模量 E=200 GPa,泊 松比 $\mu=0.3$,由式(4)算得截面剪切变形系数 $\kappa=$ 0.86,由式(5)算得截面剪切模量 G=76.92 GPa,密 度 $\rho=7$ 800 kg/m³;几何参数:圆形截面半径 0.04 m,截面积A = 0.005m²,截面惯性矩 $I_{z} = 2 \times 10^{-6}$ m⁴。

将各参数代入式(17),求得 det(H)的值在 0~ 1 000 Hz频率段中的分布,如图 4 所示,各个极小值 点对应梁的固有频率。

式(14)表明拉索在各频率点的响应由4种波叠 加而成,为了进一步探讨各种波的性质,将其分为 两组:

 $Y(x,\omega) = C_1 \exp(k_1 x) + C_2 \exp(k_2 x)$ (19) 为近场波分量;

 $Y(x,\omega) = C_3 \exp(k_3 x) + C_4 \exp(k_4 x) \quad (20)$ 为行波分量。

在图 4 中,从低频段中选取一个固有频率,频率 值为 19.387 Hz,为第 3 阶固有频率;同样,从高频 段中选取一个固有频率,频率值为 982.463 Hz,为 第 25 阶固有频率。在以上这些频率处,求得式(14) 的基础解系,再按照式(19)、式(20)将近场波与行波 分别开来,结果如图 5 所示。

由图 5 可知,近场波仅存在于边界附近,以指数 形式衰减,随着频率增大,衰减速度越快。

3 基于子结构弯曲波的索力识别方法

3.1 识别方法理论

由公式推导可知,拉索中任何位置的动力响应 在每个频率点均可写为4个波分量的叠加,第2节 对4个波分量的特性进行了研究,结果表明,近场波

衰减迅速,一般只存在固结处相当小的范围,且在高频段内更忽略不计^[17],因而,可将拉索振动响应 写为

 $Y(x,\omega) = C_3 \exp(k_3 x) + C_4 \exp(k_4 x)$ (21)

于是,可以选择拉索的某一小段作为研究对象, 子索段中任意一点的响应依然满足式(21),与常规 求解代入边界条件不同,代入拉索内部测点的动力 响应求解,因而避免了复杂的边界条件^[18]讨论,现 假设子索段上布置了*M*个测点,则

$$X = \{x_1 \quad x_2 \quad \cdots \quad x_M \}$$
(22)

为了避免 Fourier 变换产生的谱泄露问题, Igawa 等^[19]提出利用 Laplace 变换来替代 Fourier 变换,取得了非常好的效果,将各测点的动力响应结 果进行 Laplace 变换,转换到频域中,得到

$$\bar{\mathbf{Y}}_{ob} = \begin{bmatrix} \bar{Y}_{ob}(x_1, s_1) & \bar{Y}_{ob}(x_1, s_2) & \cdots & \bar{Y}_{ob}(x_1, s_n) \\ \bar{Y}_{ob}(x_2, s_1) & \bar{Y}_{ob}(x_2, s_2) & \cdots & \bar{Y}_{ob}(x_2, s_n) \\ \vdots & \vdots & \vdots & \vdots \\ \bar{Y}_{ob}(x_M, s_1) & \bar{Y}_{ob}(x_M, s_2) & \cdots & \bar{Y}_{ob}(x_M, s_n) \end{bmatrix}$$
(23)

式中: $\overline{Y}_{ob} \in C^{m \times n}$ 为观测矩阵。

式(21)为拉索振动方程的通解,各测点的动力 响应均应满足。于是,可以得到矩阵方程

$$\boldsymbol{D}(s_j) \cdot \boldsymbol{C}(s_j) = \overline{\boldsymbol{Y}}_{ob}(s_j)$$
(24)

式中:
$$\mathbf{D}(s_j) = \begin{bmatrix} \exp(k_3(s_j)x_1) & \exp(k_4(s_j)x_1) \\ \vdots & \vdots \\ \exp(k_3(s_j)x_n) & \exp(k_4(s_j)x_n) \end{bmatrix},$$

为结构特征矩阵,取决于测点位置以及拉索参数; $C(s_j) = \{C_3(s_j) \mid C_4(s_j) \},$

为系数矩阵,取决于结构特征与外部激励;

$$\begin{split} \bar{\mathbf{Y}}_{ob}(s_j) &= \{ \bar{Y}_{ob}(x,s_j) \mid \bar{Y}_{ob}(x,s_j) \mid \cdots \mid \bar{Y}_{ob}(x,s_j) \} , \\ & 为观测向量, 为式(23)的第 j 列。 \end{split}$$

如果拉索的参数、测点布置以及各测点的响应 结果已经得到,可以通过最小二乘法对波分量系数 进行求解。

$$\boldsymbol{C}(s_j) = [\boldsymbol{D}^{\mathrm{T}} \boldsymbol{D}]^{-1} \cdot \boldsymbol{D}^{\mathrm{T}} \overline{Y}_{\mathrm{ob}}$$
(25)

如果 n < 2, $C(s_j)$ 存在无数解, 无法进行参数识别; 如果 n = 2, $C(s_j)$ 只存在唯一解, 依然无法进行参数修正; 如果 n > 2, $C(s_j)$ 有最小二乘解, 存在拟合 残差:

 $\boldsymbol{\varepsilon} = \{ \boldsymbol{D}(s_j) [\boldsymbol{D}^{\mathrm{T}}(s_j) \boldsymbol{D}(s_j)]^{-1} \boldsymbol{D}^{\mathrm{T}}(s_j) - I \} \overline{Y}_{\mathrm{ob}}(s_j)$ (26)

若结构特征矩阵的各参数取值完全正确,并且 观测结果不存在噪音干扰,那么拟合残差为0。实 际工程中,索力作为待识别对象,无法正确估计,于 是,可对索力值做参数修正,然后以标准化拟合残差 达到最小作为索力识别的判定标准,如式(27)所示。

$$P = \{N, EI\} =$$

$$\min \frac{\varepsilon}{\boldsymbol{D}(s_j) [\boldsymbol{D}^{\mathrm{T}}(s_j) \boldsymbol{D}(s_j)]^{-1} \boldsymbol{D}^{\mathrm{T}}(s_j) \overline{Y}_{\mathrm{ob}}(s_j) \overline{Y}_{\mathrm{ob}}(s_j)}$$
(27)

3.2 索力识别数值算例

以拉索模型为例,验证子索段结构索力识别方 法,假定拉索长度 L=100 m,倾斜度 $\sin \alpha = 0.6$ 。材 料参数:弹性模量 E=200 GPa,泊松比 $\mu = 0.3$,根 据式(4)算得截面剪切变形系数 $\kappa = 0.86$,根据式 (5)算得剪切模量 G=76.92 GPa,密度 $\rho = 7.800$ kg/m³;拉索几何参数:圆形截面半径 0.04 m,截面 积 $A=0.005 \text{ m}^2$,截面惯性矩 $I_{zz}=2\times10^{-6} \text{ m}^4$,在拉 索的两端均设置了 0.5 m 的硬索夹段,其抗弯刚度 取值为拉索的 20 倍,近似模拟塔梁对其产生的影 响,测点布置在离索夹外 2 m 位置处,测点间隔 1 m,连续布置 3 个,如图 6 所示。

采用 ANSYS 建立拉索动力模型^[20],假定初拉 力为 3 000 kN,锤击位置设在离索夹外 1 m 处,假设 锤击力为三角形脉冲形式,取其幅值为 500 N,作用 的时长为 t=0.01 s,采样的频率取 100 Hz,采样的 点数为 $N=2^{12}=4$ 096,荷载的时域图、Fourier 系数 谱见图 7。

将求得的 3 个测点的时域动力响应经 Laplas 变换到频域内(如图 8 所示),并按式(27)组装形成 测点观测向量,按式(25)代入拉索的各个参数,测点 的位置以第一个测点为 0 点,沿拉索方向建立 *x* 轴, 形成结构特征矩阵。

通过式(30)在各频率点计算拟合残差,识别索 力,为方便观察,对各索力值的拟合残差进行绘制, 如图 9 所示。识别值为 3 026.8 kN,误差仅为 0.9%,具有相当高的精度。

4 索力识别影响因素分析

4.1 拉索抗弯刚度

拉索中同时存在几何刚度与自身的抗弯刚度,

Fig. 8 Frequency domain response diagram

Fig. 9 Schematic diagram of cable force identification

最早的频率法通过弦理论推导频率、索力的关系,未 考虑拉索自身的抗弯刚度,因而使得频率法识别索 力存在较大的误差,大量研究证实,用动力方法来进 行索力识别,必须考虑拉索自身的抗弯刚度,但对于 拉索这种特殊结构,抗弯刚度如何取值,目前依然没 有准确的计算公式^[1]。

Shimada^[21]在研究中发现,拉索的抗弯刚度通 常取计算抗弯刚度的 0.5 倍;Geier 等^[22]认为应该 取计算抗弯刚度的 2/3;谢晓峰^[23]在研究中通过最 小化频率实测值与计算值之间的误差对抗弯刚度进 行修正,认为拉索的抗弯刚度通常取计算抗弯刚度 的 0.3~0.4 倍。

因而,如何准确地利用抗弯刚度进行索力识别 仍存在一定的研究价值,本文方法理论上可以进行 多参数识别,但对索力和拉索自身的抗弯刚度同时 识别,很容易出现错误。其实,通过理论推导不难发现,随着频率的增大,拉索抗弯刚度的影响也越来越大,若用于索力识别的抗弯刚度取值大于拉索的实际刚度,可以推断,识别的索力必然随着频率点的增大而出现递减的形式。

4.2 数值算例

在第3节的数值算例中,加入下述条件:截面的 计算惯性矩为 $I_{zz}=2\times10^{-6}$ m⁴,截面的实际惯性矩 为 $I_{zz}=0.6\times10^{-6}$ m⁴,将实际惯性矩代入模型中计 算拉索动力响应,再用计算惯性矩进行索力识别,识 别结果如图 10 所示。

Fig. 10 Schematic diagram of cable force identification

从图 10 可以发现,由于进行索力识别的抗弯刚 度取值比实际刚度大,因而出现了斜率为负的索力 识别线,这与推断一致。其实,要想识别出正确的索 力结果,只需要修正抗弯刚度即可,可采用如下 方法:

1)取 $\alpha = 1$ 计算抗弯刚度 αEI ,在各频率点计算 索力,进行线性拟合,其斜率为 β ;

2)再次取值 $0 \le \alpha \le 1$,计算 α 对 β 的灵敏度 k;

3)用 $\alpha = \alpha - \beta k$ 更新抗弯刚度;

4)代入更新的抗弯刚度重新拟合索力,得到斜
 率 β;

5)当β小于预设值时,输出索力结果。

如图 11 所示,经过数次抗弯刚度修正后,索力识 别结果已经趋于一条水平线,此时 α=0.303,与理论 值 0.3 仅相差 1%,索力识别结果为 3 027.6 kN,误差 为 0.92%,具有相当高的精度。

4.3 噪音干扰

针对实际采集的振动信号通常存在某些干扰, 并且通常是与频率相关。在计算的拉索频域振动响 应中选取某个频率段,加入随机观测误差,再进行索 力识别,结果如图 12 所示。

Fig. 11 Recognition result after updating bending rigidity

由于是通过测点在每个频率点的响应来识别索 力,因而可以得到大量的索力识别值,若存在某个频 率段的干扰,通过识别图很容易区分干扰频域段,可 以剔除掉该频率段,以大量正确频率点识别结果作 为索力识别值。

5 结论

推导了修正 Timoshenko 梁振动模型的频散关 系,对拉索中的波分量进行了讨论,提出了一种新的 基于子结构中弯曲波的索力识别方法。该方法利用 拉索中的行波,通过最小二乘法拟合波分量系数,以 拟合残差最小为目标进行索力识别;也对采用该方 法进行索力识别的影响因素进行了探讨。得到以下 结论:

1)Euler-Bernoulli 梁理论在粗短梁或者高频率 段存在较大误差,Timoshenko 梁存在截止频率是由 于忽略了剪切变形引起的转动惯量,修正 Timoshenko 梁模型综合全面地考虑了各种影响,是 相对更加完善的梁理论,且在较高频段具有更高的 精度。

2)修正 Timoshenko 梁模型的拉索横向振动的 解由 4 个波系构成,可归类为近场波与行波,距离梁 端一定距离或较高的频段可不考虑近场波的影响。 3)通过 ANSYS 建立拉索振动模型,用模态叠 加法求解了拉索的动力响应,选取拉索的一个子结 构,利用3个测点的动力响应识别了拉索子段的索 力。此方法只需要拉索截面参数以及3个测点的相 对位置即可进行索力识别,与边界条件无关,在理论 上具有十分高的精度。

4)对抗弯刚度以及激励干扰对索力识别的影响 进行了分析,提出了解决办法,取得了良好的索力识 别结果,理论偏差均不超过1%。

参考文献:

- [1]郭明渊,陈志华,刘红波,等. 拉索索力测试技术与抗 弯刚度研究进展[J]. 空间结构,2016,22(3):34-43.
 GUO M Y, CHEN Z H, LIU H B, et al. Research progress of cable force test technology and cable flexural rigidity [J]. Spatial structures, 2016,22(3): 34-43. (in Chinese)
- [2] CHEN Z H, YAN R Z, LIU H B, et al. Study of a cable force determination method in prestressed steel structues [J]. International Jouranl of Space Structures, 2013, 28(2): 59-73.
- [3] CHEN C C, WU W H, LEU M R, et al. Tension determination of stay cable of external tendon with complicated constraints using multiple vibration measurements [J]. Measurement, 2016, 86: 182-195.
- [4]王语嫣. 短索振动特性及参数识别研究[D]. 成都: 西 南交通大学, 2017.

WANG Y Y. Study on vibration characteristics and parameter identification of short cable [D]. Chengdu: Southwest Jiaotong University, 2017. (in Chinese)

- [5] SCHAAL C, BISCHOFF S, GUAL L. Damage detection in multi-wire cables using guideg ultrasonic waves [J]. Structural Health Monitoring: An International Journal, 2016, 15(3): 279-288.
- [6] VOVGELAAR B, GOLOMBOK M. Quantification and localization of internal pipe damage [J]. Mechanical Systems and SIgnal Processing, 2016, 78: 107-117.
- [7] LI X Y, WANG L X, LAW S S, et al. Covariance of dynamic strain responses for structural damage detection
 [J]. Mechanical Systems and Signal Processing, 2017, 95: 90-105.
- [8] DEHGHAN M, ABBASZADEH M. Analysis of the

element free galerkin (EFG) method for solving fractional cable equation with dirichlet boundary condition [J]. Applied Numerical Mathematics, 2016, 109: 208-234.

- [9] LI S Z, REYNDERS E, MAES K, et al. Vibration-based estimation of axial force for a beam member with uncertain boundary conditions [J]. Journal of Sound and Vibration, 2013, 332(4): 795-806.
- [10] MCDANIEL J G, SHEPARD W S Jr. Estimation of structural wave numbers from spatially sparse response measurements [J]. The Journal of the Acoustical Society of America, 2000, 108(4): 1674-1682.
- [11] MAES K, PEETERS J, REYNDERS E, et al. Identification of axial forces in beam members by local vibration measurements [J]. Journal of Sound and Vibration, 2013, 332(21): 5417-5432.
- [12] 张松涵. 基于弯曲波的拉索损伤识别理论方法[D]. 成都: 西南交通大学, 2018.
 ZHANG S H. A methodology for cable damage identification based on bending wave [D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese)
- [13] DOYLE J F. Wave propagation in structures [M]. New York, NY: Springer US, 1989: 126-156.
- [14] LEE U, KIM J, OH H. Spectral analysis for the transverse vibration of an axally moving timoshenko beam [J]. Journal of Sound and Vibration, 2004, 271(3/4/5): 685-703.
- [15] 陈镕, 万春风, 薛松涛, 等. TIMOSHENKO 梁运动方程 的修正及其影响[J]. 同济大学学报(自然科学版), 2005, 33(6): 711-715.

CHEN R, WAN C F, XUE S T, et al. Modification of motion equation of timoshenko beam and its effect [J]. Journal of Tongji University (Natural Science), 2005, 33 (6): 711-715. (in Chinese)

- [16] WEAVER W Jr, TIMOSHENKO S P, YOUNG D H. Vibration problems in engineering [M]. John Wiley & Sons, 1990.
- [17] 张俊兵. 基于波谱单元法的结构动力分析[D]. 武汉: 华中科技大学,2011.
 ZHANG J B. Dynamic analysis of structures based on spectral element method [D]. Wuhan: Huazhong University of Science and Technology, 2011. (in

[18] 徐辉,任伟新.未知边界条件下索力测试方法及装置: CN104502010A[P].2015-04-08.

Chinese)

XU H, REN W X. Cable force measurement method and device under unknown boundary conditions: CN104502010A[P]. 2015-04-08. (in Chinese)

- [19] IGAWA H, KOMATSU K, YAMAGUCHI I, et al. Wave propagation analysis of frame structures using the spectral element method [J]. Journal of Sound and Vibration, 2004, 277(4/5): 1071-1081.
- [20] 王新敏. ANSYS 结构动力分析与应用[M]. 北京:人 民交通出版社, 2014.

WANG X M. Structural dynamic analysis and application with ansys [M]. Beijing: China Communications Press, 2014. (in Chinese)

[21] SHIMADA T. Estimating method of cable tension from

natural frequency of high mode [J]. Doboku Gakkai Ronbunshu, 1994,501: 163-171.

- [22] GEIER R, DE ROECK G, PETZ J. Cable force determination for the danube channel bridge in vienna
 [J]. Structural Engineering international, 2005, 15 (3): 181-185.
- [23] 谢晓峰. 索的抗弯刚度识别方法研究[D]. 长沙:中南 大学,2012.
 XIE X F. The flexural rigidity of cable identification method research [D]. Changsha: Central South University, 2012. (in Chinese)

(编辑 王秀玲)