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Classifying rockburst in deep underground mines using a robust
hybrid computational model based on gene expression programming
and particle swarm optimization
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(Department of Surface Mining, Mining Faculty; Innovations for Sustainable and Responsible Mining (ISRM)
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Abstract: In deep underground mining, rockburst is taken into account as an uncertainty risk with many adverse
effects (i.e., human, equipment, tunnel/underground mine face and extraction periods). Due to its uncertainty
characteristics, accurate prediction and classification of rockburst susceptibility are challenging, and previous
results are limited. Therefore, this study proposed a robust hybrid computational model based on gene
expression programming (GEP) and particle swarm optimization (PSO), called GEP-PSO, to predict and
classify rockburst potential in deep openings with improved accuracy. A different number of genes (from 1 to 4)
and linking functions (e. g., addition, extraction, multiplication and division) in the GEP model were also
evaluated for development of the GEP-PSO models. Geotechnical and constructive factors of 246 rockburst
events were collected and used to develop the GEP-PSO models in terms of rockburst classification.
Subsequently, a robust technique to handle missing values of the dataset was applied to improve the dataset’s
attributes. The last step in the data processing stage is the feature selection to determine potential input
parameters using a correlation matrix. Finally, 13 hybrid GEP-PSO models were developed with varying
accuracies. The findings indicated that the GEP-PSO model with three genes in the structure of GEP and the
multiplication linking function provided the highest accuracy (i.e., 80.49%). The obtained results of the best
GEP-PSO model were then compared with a variety of previous models developed by previous researchers
based on the same dataset. The comparison results also showed that the selected GEP-PSO model results
outperform those of previous models. In other words, the accuracy of the proposed GEP-PSO model was
improved significantly in terms of prediction and classification of rockburst susceptibility. It can be considered
widely applied in deep openings aiming to predict and evaluate the rockburst susceptibility accurately.
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1 Introduction

In the mining industry, especially in under-
ground mines and tunnels, a sudden, violent rupture
or high stressed rock collapse is considered as a
natural hazard with extreme risks "', and it is called
rockburst. Some rockburst events occurred, and
their destruction level are presented in Fig. 1. This
phenomenon is becoming increasingly common in
recent years, especially in complex mining conditions

[7-8]

and deep openings The rockburst problem has
claimed the lives of hundreds of miners and many
other valuable assets in the United States, Germany,
Australia, China, Canada and other countries ¥,
Understanding the risks and inherent dangers of
rockburst, many scholars efforted to assess the risk of
rockburst based on various approaches, such as seismic

15]

computed tomography detection"”, static and dynamic

[16] [8.17]

stresses ™ distance®, geomechanics , to name a
few. The evaluations showed that the rockburst
susceptibility and the influential parameters are critical
overviews of this phenomenon to forecast or prevent
this happen. Nevertheless, along with these
evaluations, the rockburst phenomenon has not been
predicted, which is challenging for researchers.

Based on previous researchers’ evaluations,
several scientists applied state-of-the-art computational
models to forecast the rockburst susceptibility in deep
openings. It is worth mentioning that soft computing
models were not only applied in rockburst forecasting,

but also in geotechnical and geoengineering"**". For
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Fig.1 Some rockburst events occurred and their

destruction level **

instance, Dong et al. ¥’ used the Random Forest (RF)
algorithm to predict the possible rockburst tendency. In
another study, Wang et al. ® applied the fuzzy matter-
element model to predict the rockburst tendency, and
it was confirmed as a reliable model to solve this
problem. Based on the mechanism of rockburst and
mining conditions (e. g. , position, depth, rockburst
magnitude, initiation time, distribution), Cai®' used
empirical computational models with in situ stress
measurement, 3D numerical modeling analysis and
laboratory tests to predict and prevent the rockburst

grade. Besides, Zhou et al. ™ developed various
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supervised learning models for predicting rockburst
tendency, including k-nearest neighbor (KNN),
multilayer perceptron neural network (MLPNN),
random forest (RF), linear discriminant analysis
(LDA), Naive Bayes (NB), gradient-boosting machine
(GBM), quadratic discriminant analysis (QDA), partial
least-squares discriminant analysis (PLSDA), support
vector machine (SVM) and classification tree (CT).
Finally, they found that the GBM is the best model for
classifying the rockburst tendency. A decision tree
model was also applied by Pu et al. ®" to predict the
rockburst potential. Different accuracies with acceptable
results were reported in their study. By another
approach, Pu et al. " applied the SVM model with the
support of the t-distributed stochastic neighbor
embedding and clustering technique for predicting
rockburst.  Eventually, they concluded that the
proposed model based on the SVM model is a potential
model with wide applications in the rockburst

prediction. Zhou et al. ®*

converted this classification
problem to a regression problem and applied a hybrid
model based on artificial neural network (ANN) and
artificial bee colony (ABC) to predict rockburst, and it
is considered as another approach to predict rockburst.
Based on the particle swarm optimization (PSO), Xue
et al. * developed an extreme learning machine (ELM)
model to predict rockburst with a promising result.
Faradonbeh et al. " applied the fuzzy C-means (FCM)
and self-organizing map (SOM) techniques to predict
rockburst tendency. An accuracy of 75.8% was
reported in their study for the FCM model, and it was
up to 100% for the SOM model. Nevertheless, only 58
rockburst events were used in this study, and it is a
small database that can not be represent for other areas.
Zhang et al. " applied a variety of ensemble machine
learning models, such as ANN, SVM, KNN, NB and
logistic regression for predicting rockburst intensity
using 188 rockburst intances. It is indicated that the
ensemble model can classify rockburst better than single
models with an improvement of 15.4%. He et al. "
evaluated and predicted the rockburst behaviors in 13
deep traffic tunnels in China. Nonetheless, only
empirical equations were applied in their study. In

another study, Zhou et al. * developed the firefly

algorithm-based ANN model (FA-ANN) for classifying
rockburst with a potential solution that can support
underground mines and tunnels determine and prevent
hazardous under different conditions.

Although many soft computational models have
been proposed to predict the rockburst tendencys;
however, their accuracy is still limited, and the
accuracy of computational models is a challenge.
Therefore, this study presented a novel method to
improve  computational models’ accuracy  for
classifying rockburst susceptibility, namely GEP-
PSO. Indeed, the gene express programming (GEP)
will be applied to classify the rockburst grade;
meanwhile, the PSO algorithm plays a role as an
optimization tool to improve the GEP model's
accuracy. Furthermore, a different number of genes
and linking functions will be surveyed to discover
their feasibility and accuracy in terms of rockburst

classification and evaluation.

2 Principle of the machine learning

algorithms used

As stated above, this study aims to classify and
evaluate the rockburst phenomenon’s capacity in deep
openings by a novel combination of the PSO
algorithm and GEP. Therefore, this section focuses
on the PSO and GEP models principles to propose
the PSO-GEP model framework.

2.1 Gene expression programming (GEP)

GEP is well-known as an evolutionary theory
proposed by  Ferreira® based on  genetic
programming (GP) and parse trees. Therefore, it
uses similar GP parameters, such as terminal

conditions, function set, control parameters,
terminal set and fitness function®’. GEP has greatly
surpassed the existing evolutionary techniques and
extremely versatile since it inherited the advantages
from GP, 1. e., the expressive parse trees of varied

shapes and sizes™"

. In brief, the evolution process of
GEP can be explained through the following steps.
Step 1: Initialization
In this step, the initial chromosomes are set

equal to the population dimension, and they are
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generated randomly. Herein, each chromosome
consists of genes, and they are organized based on
structures (head and tail) aiming to create a valid

solution Y,

This stage 1s also called Karva, and it
can represent any mathematical or logical expression
with different sizes and shapes. Accordingly, all
chromosomes are converted to expression trees, and
then the generated solutions are performed to obtain
the fitness values.

Step 2: Selection and reproduction

In this step, the operator will select programs to
replicate the operator to copy a chromosome with
high fitness into a new generation. The potential
individuals are specified for the next generation based
on their fitness through the roulette wheel selection.
They are considered the main factors to guarantee the
cloning and survival of the new population’s best
chromosomes. In the new population, the genetic
operations are applied to manipulate during
reproduction process based on randomly selected
chromosomes genetically. Thus, a chromosome in
GEP may be modified to better fit individuals in the
new generation. The genetic operations are applied
during the reproduction process, including mutation,
insertion sequence transposition, root insertion
sequence transposition, gene transposition, single
and double crossover gene crossover and inversion.

Step 3: Termination

The program executes the steps above and
repeats for a certain number of generations or
satisfies the stopping conditions (i. e. , lowest error
for population). Finally, the best expression tree is
found out and exported as the output of the problem.
The flowchart of GEP is shown in Fig. 2, and its
pseudo-code is presented in Fig. 3.
2.2 Particle swarm optimization (PSO)

PSO is well-known as a robust metaheuristic
algorithm that was successfully applied for different

42-46]

optimization problems' It was proposed by

Kennedy et al.""”’ based on the nature-based
behaviors of swarms (e. g., flock birds, bee, ant).

These behaviors are simulated under the moving

2. foreach Solution; € population do
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Fig.2 The procedure of GEP algorithm
GEP algorithm
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Fig. 3 Pseudo-code of GEP algorithm
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around the search space of the particles in the
swarm. Each individual is assigned a position (x,),
and they fly around the search space with a velocity
(v,). For each position, each particle’s fitness is
evaluated and recorded, and the best fitness (P,.) is
shared with the other individuals. Each particle
keeps track of the best fitness and expands the search
space to find out the better position (Gy). The
searching process may be repeated many times to
obtain satisfying values. The optimization process of
the PSO algorithm is illustrated in Fig. 4. Further
details of the PSO algorithm can be read in the

references [48-54].

| Initialize particles with random position and velocity |

1

—'| Calculate fitness for each particles |

Current fitness
better than P, 7

Assign current position

as anew P

I

| Assign the optimal Py value as G, |

| Update the velocity of the particles |

l

| Update the positions of the particles |

Fig. 4 Optimization procedure of the PSO algorithm

2.3 PSO-based GEP model for -classifying
rockburst in deep openings

As the primary purpose of this study, the GEP-
PSO framework is considered and proposed in this
section, aiming to improve the classification model of
rockburst, i.e., GEP. Accordingly, a mathematical
equation will be offered based on a customized
combination of PSO and GEP using the dependent
variables. In the first step, GEP is applied to build a
mathematical with an acceptable ROC curve result.
Subsequently, the established chromosomes are used

as the main parts of the modified GEP models in the

next step. The chromosomes are then embedded in
the PSO algorithm to determine a better performance
of the ROC curve based on the correct structure of
the GEP model, called the GEP-PSO model. Note
that the number of genes and linking functions are
taken into account as the vital parameters of the GEP
models, and the performance of the GEP models is
highly dependent on these parameters.

Furthermore, in each GEP model, weights (or
coefficients) are often determined based on the
dataset’s characteristics and the chromosomes,
genes, and linking function. However, weights can
be adjusted to get better accuracy for the GEP
models based on a specific number of genes and
linking functions.

In order to embed the PSO algorithm to GEP
models, an initial number of populations is necessary
for the optimization process of the PSO algorithm,
and they might repeat many times to obtain a better
ROC curve value. The PSO algorithm can modify
the GEP model's coefficients to get higher ROC
curve values. The algorithm will stop when the best
ROC value is reached (satisfied), or the searching is
iterations.  The

repeated with the specified

framework is proposed in Fig. 5.

3 Data acquisition and processing

3.1 Data acquisition

First of all, it is necessary to emphasize that
rockburst is a dangerous phenomenon in deep
underground mines and tunnels, as mentioned
above. It is difficult to observe these phenomena,
and it is challenging to collect a dataset with multiple
observations. Therefore, many previous researchers
efforted to collect and merge many cases from
different deep underground mines and tunnels " *
as a dataset. Finally, 246 rockburst samples were
collected in previous studies (Fig. 6), summarized by
Zhou et al. ® and used to investigate and evaluate
the performance of the proposed model in this study.

From the various datasets collected, there are

12 variables recorded, including the depth of
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Fig. 5 Proposed hybrid PSO-GEP algorithm for classifying rockburst
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Fig. 6 Data collection of the rockburst events using microseismic systems and some results (Modified after Ma et al.””)
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3.2 Processing the collected rockburst dataset

Before developing the classification models for
rockburst, the collected dataset should be processed
and prepared to ensure the dataset's generalized
characteristics and avoid overfitting the models. An
analysis shows that some values in the first variable
are missed, and they are variance account for 13% of
the whole number of observations, as illustrated in
Fig. 7.
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Fig.7 Processing the missing data of rockburst

In this case, there are three options for solving
the X, variable, including removing the entire of this
variable, removing rows with missing values, or
filling the missing values. However, given the
effects of the input variables, many researchers
indicated that X, significantly impacts the probability
of rockburst in deep openings. Therefore, the X,
variable was kept on. Also, to avoid reducing the
dataset’s size, the rows with missing values were
kept on as well. Finally, a data processing technique
has been applied to fill the missing values to the
collected dataset, namely "mean column values""".
The processed dataset’s input variables were then
show  their

visualized as a scatter plot to

characteristics (Fig. 8).

Based on the scatter plot matrix in Fig. 8, we
can observe the randomness, distribution, and

correlation  between  the input  variables.
Interestingly, the characteristics of the X,, X,, X,
and X, variables are highly similar, and even with
the same distributions, as shown in the crop of
Fig. 9 below. Accordingly, we can see that the
correlation between X, and X,, is strong similar to
the correlation between X, and X;;,. In addition, the
correlation between X and X, is not strongly like the
X, and X),, but it is also high similarity compared to
pairs of X,,-X}; and X-X),. Therefore, they should
be removed to ensure the models” accuracy. Finally,
this study only used seven input parameters (from X,

to X;) to forecast and classify the rockburst hazards.

4 Development of the models and
results

To develop the GEP-PSO model for forecasting
and to classify the rockburst ability, the flowchart in
Fig. 4 was applied. Accordingly, an initial GEP
model was developed first, and the parameters of the
PSO algorithm was set up to optimize the weights of
the GEP model. The initial parameters of the GEP
model were set up as follow:

Number of chromosomes: 30

Head size: 8

Number of genes: from 1 to 4

Fitness function: ROC measure

Strategy: optimal evolution

Genetic operators: Mutation 0. 001 38; Inversion
0. 005 46;

Constants per gene: 10

Lower and upper bounds: [— 10, 10]

Before developing the GEP-PSO models, the
parameters of the PSO algorithm, including local
coefficient (c,), global coefficient (c,), weight min
factor (w;) and weight max factor (w,) were also
setupas 1.2, 1.2, 0.4 and 0.9, respectively.

In GEP models, there are the initial parameters
described above. The number of genes and linking
functions are crucial criteria to decide on the forecast
models’ accuracy. Therefore, this study developed
13 different GEP models based on different genes
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e = @ [0 150253 algorithm then optimized these 13 GEP models and
? ? ? 20
iojﬁ N o(}% o B 1 they are described in Eq. (1) to Eq. (13), as follow.
5
] 5 cﬁ — 9'51121'5 04 Model 1: This model was developed based on
500 300 500 ©
R = . 4 :gggxlo only one gene and without any linking functions.
.)% & p100 The PSO algorithm optimized the weights of the
oF40 T T T
o Ly *F model, and it is described Eq. (6).
20 x9 20 -
4
) 00 e Gene1:exp(f/Xf><X6—0—(X7><X4))—X5
30001 5102500 ) oK)
[2 00 %8 1 500 ¢ ¢ @ e Rockburstzexp(yX;f><X6+(X7><X4>>—X5 (6)
1000
0500 1500 00 & ) q .
0 / ] Model 2: This model was developed based on

Fig. 9 A crop of scatter plot matrix and analysis of the

similarities and differences between X8-X11 variables

(from 1 to 4) and linking functions (e. g. , additional,

subtraction, multiplication and division). The PSO

two genes and the addition linking function. The
PSO algorithm optimized the weights of the model,
and it is described in Eq. (7).

Gene 1: lg(ng)
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Gene 2: tan(sin((arctan X, X/ X, )— /X, +X.)))
Rockburst  =log ( X; )+ tan (sin ((arctan X; X

VX=X + X)) (7)

Model 3: This model was developed based on
two genes and the subtraction linking function. It is
worth noting that these genes are different from the

genes developed in the Model 1 and Model 2. The

PSO algorithm optimized the weights of the model,
and it is described in Eq. (8).
Gene 1:

(—3.965X,)" X X}

X ((Xs— 2.544) +

tan( — 2.248))

(—0.841X,)"
—2.862X, X 2. 712

Gene 2:

Xexp(arcth (X,))

Rockburst :[( — 3.965)(\»,)4 X X7 X ((Xs — 2.544) + tan( — 2.248))} X

(—0.841X,)"
—2.862X, X 2.712

Model 4: This model was developed based on
two genes and the multiplication linking function. It
is worth noting that these genes are different from the
genes which were developed in the Model 1, Model
2 and Model 3. The PSO algorithm optimized the
weights of the model, and it is described in Eq. (9).

22.727

Gene 1: LI
ene 1 ( X, — 10. 54

X, —(X.+16.11))—

3 5
: X,
Gene 2:/ cos(Xﬁ)
X,

Rockburst z{(xz —(X,+16.11)) —

3
22.727 ' X,
— | X cos| X —— (9)
X47 1054 X[

Model 5: This model was developed based on

two genes and the division linking function. It is
worth noting that these genes are different from the
genes which were developed in the Model 1 to Model
4. The PSO algorithm optimized the weights of the

model, and it is described in Eq. (10).

Gene 1: ; X exp(f/X2 )
1
X,
sin(—4. 558X,)
Gene 2:
0.198
1 _
- X exp(f/X2>
T
ND. €
Rockburst = : (10)

sin(—4.558X,)
0.198

(8)

X exp (arctan (X))

Model 6: This model was developed based on
three genes and the addition linking function. Tt is
worth noting that these genes are different from the
genes developed in the Model 1 to Model 5. The
PSO algorithm optimized the weights of the model,

and it is described in Eq. (11).
Gene 1: X; — [co%(tan X)) <4/ —JX )J

Gene 2: 1g(X3)
Gene 3:

In | X, (X, +1.698))+ J(—6.643 — X,)
[ ) )

Rockburst =

X, — [cos(tan(X(, )X(f r)}leg(X

ln<j/(X3+(X7+ 1.698)) + J(—6.643 — X,) )

(11)

Model 7: This model was developed based on

three genes and the subtraction linking function. It is

worth noting that these genes are different from the

genes which were developed in the Model 1 to Model

6. The PSO algorithm optimized the weights of the
model, and it is described in Eq. (12).

X,

(arctan((arctan((lg(Xg))2>)3))

Gene 2: tan( X))

Gene 1:

3

Gene 3: 7)(1 +<tan<ﬁ)+ (X,— 5. 565))4
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Rockburst =
X,

3 _tanX4_

(arctan(<arctan(<lg(X3)>2>)3)) (12)

yxnt(tan(ﬁ )+(X2—5.565)>4

Model 8: This model was developed based on
three genes and the multiplication linking function. It
1s worth noting that these genes are different from the

genes which were developed in the Model 1 to

X. % Cos(arctan((Xz —619.415)" % (X, + 1.149) X (X, + 619.415)))) X

Model 7. The PSO algorithm optimized the weights
of the model, and it is described in Eq. (13).

Gene 1: X;

Gene 2:

Cos<arctan<(X2 —619.415)" X (X, +

1.149) X (X, + 619.415))))

Gene 3:
Xer[cos(tan(XQ)X (ZX(,- +(8.19 — XQ)}
Rockburst =

(13)

X, + [ cos(tan (X)X (2X,+(8.19 —(X.)) )|

Model 9: This model was developed based on
three genes and the division linking function. It is
worth noting that these genes are different from the
genes which were developed in the Model 1 to
Model 8. The PSO algorithm optimized the weights
of the model, and it is described in Eq. (14).

I sin ( Xs) ’
8\ x, +8.757

2

Gene 1: — X,

1( sin X )Z
8\x +8.757

3

1. 65

Gene 2:(—2. 68 +( —667. 169 — (X X

X1>>)3

x, \
Gene 3:| arccos| cos| cos
4.225

Rockburst =

4

5\ 2

— X,

X
1.65

(—2.68

Model 10: This model was developed based on
four genes and the addition linking function. It is
worth noting that these genes are different from the
genes which were developed in the Model 1 to Model
9. The PSO algorithm optimized the weights of the
model, and it is described in Eq. (15).

Gene 1: JX77

Gene 2: X/

Gene 3: In(In (X))

4

Gene 4: 1. 506X, X exp(ﬁ)
Rockburst =

X!+ In(In(X,)) + 1.506X; X 4 exp(yxf) (15)
Model 11: This model was developed based on

four genes and the subtraction linking function. It is

worth noting that these genes are different from the

+(—667.169 — (X, X Xl))) X

(14)

sl 2]

genes which were developed in the Model 1 to Model
10. The PSO algorithm optimized the weights of the
model, described in Eq. (16).

1
Gene 1: (X, + X, + X;) X (exp(x))

5

Gene 2: X;

Gene 3: {8. 569 — (((m)%) X Xzﬂ

Gene 4: (X, — 552.579) X (X, — (X, + X,))
Rockburst =

{(X3+X2+X6)><<exp(imx3 (16)

[(X,—552.579) % (X, — (X, + X)) ]
Model 12: This model was developed based on

four genes and the multiplication linking function. It

3

is worth noting that these genes are different from the
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genes which were developed in the Model 1 to Model
11. The PSO algorithm optimized the weights of the
model, described in Eq. (17).

Gene 1: ((JZ—)Q) X arctan (X, + 0. 297))2

Gene zz(tan(xf))3+(x2—x5)+sin(X4)

Gene 3: X,

Gene 4: [cos(—lz. 269((X7+X4)><X5))—XS}2
Rockburst = ( (/X7 — X,) X arctan(X, + 0.297))2 x
(tan(X7)) + (X, — X;)+ sin(X,) X X, ¥

{cos( —12.269((X: + X,) X X)) — XBT

Model 13: This model was developed based on
four genes and the division linking function. It is
worth noting that these genes are different from the
genes which were developed in the Model 1 to Model
12. The PSO algorithm optimized the weights of the
model, and it is described in Eq. (18).

Gene 1: tan((sin(tan(cos(XS)))>3)

1

Gene 2: — 2X,

X
tan( -+ 6. 482)
X.

2
Gene 3: X, — sin(In(X;))
Gene 4: X7

(17)
3
tan((sin(tan(cos(XQ))) )
Rockburst = (18)
1 . 6
< —2X, [ X (X, — sin(In(X7))) X X¢
3
tan| — + 6.482
on( 3+ 6.452)
Once the GEP-PSO equations were well- phase. Thus, it can be seen that the GEP-PSO
established  for  forecasting  rockburst,  their model with only one gene and without linking

performance was computed and evaluated through
various metrics, such as accuracy, positive predictive
value (PPV), recall, correl, F1 measure, and area
under the ROC Curve (AUC). Nevertheless, it is
challenging to conclude which model is the best in
forecasting rockburst ability based on various
metrics. Therefore, a ranking method was applied to
classify and rank the models’ performance. The
details of the performances are shown in Table 1 and

Table 2.

5 Discussion

The PSO algorithm was applied to optimize 13
GEP
susceptibility in deep openings. The experimental
results in Table 1 and Table 2 proved the high
effectiveness of the proposed GEP-PSO models. Of
those, the GEP-PSO models with multiple genes
tend to better than the GEP-PSO model with only
one gene. Nevertheless, not all models with multiple

models  for classifying the rockburst

genes outperform the model with only one gene. The
GEP-PSO model 1 with only one gene provided an

unstable performance on the training and testing

function is unstable for classifying rockburst.
Considering the GEP-PSO models with multiple
genes and different linking functions, it can be seen
that the GEP-PSO model 8 with three genes and the
multiplication linking function was used, provided the
best performance on both the training and testing
phases (i. e., Accuracy=289.63, PPV=64.86,
Recall=85.71, Correl=0.450, F1 measure=
0.738 and AUC ROC=0.902, and the total ranking
of 58 on the training dataset; Accuracy==80.49,
PPV=50.00, Recall=68.75, Correl=0.255, F1
measure=0. 529, AUC ROC=0. 807, and the total
ranking of 54 on the testing dataset). Although the
GEP-PSO  models' different;
their strongly

performances are
high and
improved with the support of the PSO algorithm,

however, accuracy 18

compared with that of other models in the previous
Fig. 10 ROC Curve
performance of the GEP-PSO models developed in

[30, 55]

studies shows the

this  study to classify rockburst in different
underground projects.
It can be observed that the GEP-PSO model 4

with two genes and the multiplication linking function
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ROC Curve performance of the models
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Fig. 10 ROC Curve of the GEP-PSO models for

classifying rockburst

provided the poorest ROC Curve performance even
though it used more than one gene and linking
function. This finding indicates that the GEP-PSO
model with two genes and the multiplication linking
function should not be used for classifying rockburst
in this study since its poor and unstable performance.
The other GEP-PSO models are also potential
models, and their implementation is acceptable.

For further assessment of the proposed hybrid
PSO-based GEP models for classifying rockburst,
the classification scatter plots of 13 proposed models
were draw on the testing dataset based on the false
negative (FN), false positive (FP), true negative
(TN), true positive (TP), and the cutoff points of the
models, as shown in Fig. 11. Accordingly, the best
model provided the FN, FP, TN and TP on or
nearest the cutoff points. In other words, the best
convergence of FN, FP, TN, TP and the cutoff

points, the best model for classifying rockburst.
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Fig. 11 Classification scatter plot of the proposed

hybrid models

From the classification scatter plot of the
proposed hybrid models in Fig. 11, it is clear that
the proposed hybrid GEP-PSO models provided the
classification systems with pretty good accuracy.
The Model 8 and Model 9 provided the highest
accuracy in classifying rockburst phenomenon with
greater TN and TP points. Taking a closer look at
Fig. 11(h) and Fig. 11(i), it can be seen that the
Model 8 model provided better accuracy than those
of the model 9 with greater TN and TP points. The
model’s accuracy based on the dummy variable is
very high, with the lowest range of the model and
the cutoff point is approximate 0. These findings
indicated that the Model 8 is the best expert system
for classifying rockburst phenomenon in underground
openings. A comparison of the obtained results in
this study with that of the previous studies based on
the same dataset is shown in Table 3.

Based on the comparisons of Table 3, we can
see that this study also used seven input parameters;
however, the last input variable 1s different from the
previous studies. X7 variable was used instead of
X11 in the previous studies based on the data
analyses of the collected database. This finding
indicated that the X7 variable should be used instead
of the X11 variable to get better performance with the
proposed GEP-PSO model.



Table 3 Comparison of the proposed GEP-PSO model (of this work) and previous models (by previous researchers)

References Model Inputs Accuracy
[30] GBM X, X, Xy, Xy, X, X, Xy 76.6%
[59] Cloud model with rough set X, Xy, Xy, Xy, X, X, Xy 71.05%

This study GEP-PSO X, Xy, X5, Xy, X, X, X, 80.49%

6 Validation of the models

To demonstrate the selected hybrid GEP-PSO
model's accuracy, six other observations were used
as the unseen dataset in practice. It is worth noting
that these observations have not been used to develop
the models and tested on the testing dataset. The

input parameters of these six observations were
entered into the selected hybrid model to validate the
outcome predictions. Finally, they were compared
with the experimental results to decide the developed
of the
validation dataset and the forecasted results are
shown in Table 4.

expert systems. The input parameters

Table 4 Validation dataset and the forecasted results of the proposed GEP-PSO model

X, X, X, X, X, X, X, Y GEP-PSO Match
500 25. 34 90 6.55 0.52 16.25 0.83 0 0 OK (TN)
535 47.06 125 7.50 0.36 22.15 0.90 0 0 OK (TN)
458 34.66 85. 96 8.12 0.65 18.22 0.85 1 0 Wrong (FN)
605 21.08 80. 50 5.44 0.28 25.35 0.95 0 0 OK (TN)
780 68.25 92.35 7.12 0.88 14.25 0.88 1 1 OK (TP)
850 77.62 115.20 8.55 0.76 28.19 0.90 1 1 OK (TP)

Based on the forecasted results in Table 4, it
can be seen that the classification accuracy and error
of the selected GEP-PSO model is pretty high, with
an accuracy of 83.33% (i. e., 5 correct predictions
and 1 wrong prediction). The predicted results on the
validation dataset are summarized in Table 5 through
the classification accuracy and error, and confusion
These
proposed and selected GEP-PSO model is a potential

matrix. results demonstrated that the
expert system to predict the practice’s rockburst
phenomenon. It is a useful tool to prevent the

rockburst tendency.

7 Conclusions and remarks

Rockburst hazard is a geological phenomenon
encountered in deep openings and tunnels that lead to
injuries and deaths, damaged equipment, and
deformation of underground/tunnel faces. Due to
those adverse effects, soft computational models for
predicting and classifying rockburst grades are
considered potential approaches to early warning the
rockburst susceptibility and evaluating the intensity

of rockburst. This study proposed a novel soft

Table 5 Summary of the predicted results on the

validation dataset

83.33%
16.67%

16.67%

0.00% 50. 00%

computational model, i. e., the GEP-PSO model,
to predict and classify rockburst tendency with high
accuracy. The results showed that the accuracy of
the proposed GEP-PSO model was significantly
improved based on the corrected values of missing
values and the number of genes and linking functions
of the GEP model. Besides, the PSO algorithm also

played an essential role in improving the accuracy of
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the GEP model. The obtained results indicated that
the proposed GEP-PSO model provided a superior
accuracy compared with that of the published
classification models. In conclusion, the GEP-PSO
model should be used as an expert system in practical
engineering to warn the rockburst susceptibility and
prevent this phenomenon from reducing this severe

problem’s losses.
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