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Classifying rockburst in deep underground mines using a robust 
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Abstract: In deep underground mining, rockburst is taken into account as an uncertainty risk with many adverse 
effects (i. e., human, equipment, tunnel/underground mine face and extraction periods). Due to its uncertainty 
characteristics, accurate prediction and classification of rockburst susceptibility are challenging, and previous 
results are limited. Therefore, this study proposed a robust hybrid computational model based on gene 
expression programming (GEP) and particle swarm optimization (PSO), called GEP-PSO, to predict and 
classify rockburst potential in deep openings with improved accuracy. A different number of genes (from 1 to 4) 
and linking functions (e. g., addition, extraction, multiplication and division) in the GEP model were also 
evaluated for development of the GEP-PSO models. Geotechnical and constructive factors of 246 rockburst 
events were collected and used to develop the GEP-PSO models in terms of rockburst classification. 
Subsequently, a robust technique to handle missing values of the dataset was applied to improve the dataset's 
attributes. The last step in the data processing stage is the feature selection to determine potential input 
parameters using a correlation matrix. Finally, 13 hybrid GEP-PSO models were developed with varying 
accuracies. The findings indicated that the GEP-PSO model with three genes in the structure of GEP and the 
multiplication linking function provided the highest accuracy (i. e., 80.49%). The obtained results of the best 
GEP-PSO model were then compared with a variety of previous models developed by previous researchers 
based on the same dataset. The comparison results also showed that the selected GEP-PSO model results 
outperform those of previous models. In other words, the accuracy of the proposed GEP-PSO model was 
improved significantly in terms of prediction and classification of rockburst susceptibility. It can be considered 
widely applied in deep openings aiming to predict and evaluate the rockburst susceptibility accurately.
Keywords: rockburst； GEP-PSO model； underground-mining； deep openings； risk assessment

基于基因表达编程和粒子群优化鲁棒混合计算
模型的深部地下矿井岩爆分类

TRAN Quang-Hieu， BUI Xuan-Nam， NGUYEN Hoang
(Department of Surface Mining, Mining Faculty； Innovations for Sustainable and Responsible Mining (ISRM) 

Research Group, Hanoi University of Mining and Geology, Hanoi 100000, Vietnam)

摘 要：在深部地下采矿中，岩爆因具有许多不利影响（如对人员、设备、隧道/地下矿山工作面和

开采周期等的影响）而被视为不确定性风险。由于其不确定性的特征，对岩爆趋势的准确预测和

DOI： 10. 11835/j. issn. 2096-6717. 2022. 023

Received: 2021⁃11⁃16
Author brief: TRAN Quang-Hieu, PhD, main research interests: rock mechanics; blasting, occupational safety and health in 

mining, E-mail: tranquanghieu@humg.edu.vn.

开放科学（资源服务）标识码 OSID:



第  45 卷土 木 与 环 境 工 程 学 报（中 英 文）

分类具有一定难度，且已有研究成果较少。提出一种基于基因表达编程（GEP）和粒子群优化

（PSO）的鲁棒混合计算模型 GEP-PSO，用于预测和分类深部开口的岩爆趋势，提高了预测和分类

的准确性。在建立 GEP-PSO 模型的过程中，评估 GEP 模型中不同数量的基因（1~4）和连接功能

（例如，加法、提取、乘法和除法）。收集 246 次岩爆发生的地质和施工因素，用于建立岩爆分类的

GEP-PSO 模型；应用处理数据集缺失值的技术改进数据集的属性；用相关矩阵选取潜在输入参数

的特征；建立 13 个混合 GEP-PSO 模型，得到各模型的精度。结果表明：在 GEP 结构中具有 3 个基

因和乘法连接函数的 GEP-PSO 模型具有最高的准确度（80.49%）。将获得的最佳 GEP-PSO 模型

的结果与基于相同数据集开发的各种已有模型进行比较，结果表明，选择的 GEP-PSO 模型结果优

于已有模型，表明提出的 GEP-PSO 模型在岩爆等级的预测和分类方面的准确性显著提高，可以应

用于深开挖工程中，以准确预测和评估岩爆敏感性。

关键词：岩爆；GEP-PSO 模型；地下采矿；深开挖；风险评估
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1　Introduction

In the mining industry, especially in under-
ground mines and tunnels, a sudden, violent rupture 
or high stressed rock collapse is considered as a 
natural hazard with extreme risks [1-2], and it is called 
rockburst.  Some rockburst events occurred, and 
their destruction level are presented in Fig.  1.  This 
phenomenon is becoming increasingly common in 
recent years, especially in complex mining conditions 
and deep openings [7-8].  The rockburst problem has 
claimed the lives of hundreds of miners and many 
other valuable assets in the United States, Germany, 
Australia, China, Canada and other countries [9-14].

Understanding the risks and inherent dangers of 
rockburst, many scholars efforted to assess the risk of 
rockburst based on various approaches, such as seismic 
computed tomography detection [15], static and dynamic 
stresses [16], distance [2], geomechanics [8,17], to name a 
few.  The evaluations showed that the rockburst 
susceptibility and the influential parameters are critical 
overviews of this phenomenon to forecast or prevent 
this happen.  Nevertheless, along with these 
evaluations, the rockburst phenomenon has not been 
predicted, which is challenging for researchers.

Based on previous researchers' evaluations, 
several scientists applied state-of-the-art computational 
models to forecast the rockburst susceptibility in deep 
openings.  It is worth mentioning that soft computing 
models were not only applied in rockburst forecasting, 
but also in geotechnical and geoengineering [18-26].  For 

instance, Dong et al.  [27] used the Random Forest (RF) 
algorithm to predict the possible rockburst tendency.  In 
another study, Wang et al.  [28] applied the fuzzy matter-
element model to predict the rockburst tendency, and 
it was confirmed as a reliable model to solve this 
problem.  Based on the mechanism of rockburst and 
mining conditions (e. g. , position, depth, rockburst 
magnitude, initiation time, distribution), Cai [29] used 
empirical computational models with in situ stress 
measurement, 3D numerical modeling analysis and 
laboratory tests to predict and prevent the rockburst 
grade.  Besides, Zhou et al.  [30] developed various 

Fig. 1　Some rockburst events occurred and their 
destruction level [3-6]
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supervised learning models for predicting rockburst 
tendency, including k-nearest neighbor (KNN), 
multilayer perceptron neural network (MLPNN), 
random forest (RF), linear discriminant analysis 
(LDA), Naïve Bayes (NB), gradient-boosting machine 
(GBM), quadratic discriminant analysis (QDA), partial 
least-squares discriminant analysis (PLSDA), support 
vector machine (SVM) and classification tree (CT).  
Finally, they found that the GBM is the best model for 
classifying the rockburst tendency.  A decision tree 
model was also applied by Pu et al.  [31] to predict the 
rockburst potential.  Different accuracies with acceptable 
results were reported in their study.  By another 
approach, Pu et al.  [32] applied the SVM model with the 
support of the t-distributed stochastic neighbor 
embedding and clustering technique for predicting 
rockburst.  Eventually, they concluded that the 
proposed model based on the SVM model is a potential 
model with wide applications in the rockburst 
prediction.  Zhou et al.  [33] converted this classification 
problem to a regression problem and applied a hybrid 
model based on artificial neural network (ANN) and 
artificial bee colony (ABC) to predict rockburst, and it 
is considered as another approach to predict rockburst.  
Based on the particle swarm optimization (PSO), Xue 
et al.  [34] developed an extreme learning machine (ELM) 
model to predict rockburst with a promising result.  
Faradonbeh et al.  [35] applied the fuzzy C-means (FCM) 
and self-organizing map (SOM) techniques to predict 
rockburst tendency.  An accuracy of 75. 8% was 
reported in their study for the FCM model, and it was 
up to 100% for the SOM model.  Nevertheless, only 58 
rockburst events were used in this study, and it is a 
small database that can not be represent for other areas.  
Zhang et al.  [36] applied a variety of ensemble machine 
learning models, such as ANN, SVM, KNN, NB and 
logistic regression for predicting rockburst intensity 
using 188 rockburst intances. It is indicated that the 
ensemble model can classify rockburst better than single 
models with an improvement of 15. 4%.  He et al.  [37] 
evaluated and predicted the rockburst behaviors in 13 
deep traffic tunnels in China.  Nonetheless, only 
empirical equations were applied in their study.  In 
another study, Zhou et al.  [38] developed the firefly 

algorithm-based ANN model (FA-ANN) for classifying 
rockburst with a potential solution that can support 
underground mines and tunnels determine and prevent 
hazardous under different conditions.

Although many soft computational models have 
been proposed to predict the rockburst tendency; 
however, their accuracy is still limited, and the 
accuracy of computational models is a challenge.  
Therefore, this study presented a novel method to 
improve computational models' accuracy for 
classifying rockburst susceptibility, namely GEP-

PSO.  Indeed, the gene express programming (GEP) 
will be applied to classify the rockburst grade; 
meanwhile, the PSO algorithm plays a role as an 
optimization tool to improve the GEP model's 
accuracy.  Furthermore, a different number of genes 
and linking functions will be surveyed to discover 
their feasibility and accuracy in terms of rockburst 
classification and evaluation.

2　 Principle of the machine learning 
algorithms used

As stated above, this study aims to classify and 
evaluate the rockburst phenomenon's capacity in deep 
openings by a novel combination of the PSO 
algorithm and GEP.  Therefore, this section focuses 
on the PSO and GEP models' principles to propose 
the PSO-GEP model framework.
2. 1　Gene expression programming (GEP)

GEP is well-known as an evolutionary theory 
proposed by Ferreira [39] based on genetic 
programming (GP) and parse trees.  Therefore, it 
uses similar GP parameters, such as terminal 
conditions, function set, control parameters, 
terminal set and fitness function [40].  GEP has greatly 
surpassed the existing evolutionary techniques and 
extremely versatile since it inherited the advantages 
from GP, i. e. , the expressive parse trees of varied 
shapes and sizes [41].  In brief, the evolution process of 
GEP can be explained through the following steps.

Step 1: Initialization
In this step, the initial chromosomes are set 

equal to the population dimension, and they are 
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generated randomly.  Herein, each chromosome 
consists of genes, and they are organized based on 
structures (head and tail) aiming to create a valid 
solution [41].  This stage is also called Karva, and it 
can represent any mathematical or logical expression 
with different sizes and shapes.  Accordingly, all 
chromosomes are converted to expression trees, and 
then the generated solutions are performed to obtain 
the fitness values.

Step 2: Selection and reproduction
In this step, the operator will select programs to 

replicate the operator to copy a chromosome with 
high fitness into a new generation.  The potential 
individuals are specified for the next generation based 
on their fitness through the roulette wheel selection.  
They are considered the main factors to guarantee the 
cloning and survival of the new population's best 
chromosomes.  In the new population, the genetic 
operations are applied to manipulate during 
reproduction process based on randomly selected 
chromosomes genetically.  Thus, a chromosome in 
GEP may be modified to better fit individuals in the 
new generation.  The genetic operations are applied 
during the reproduction process, including mutation, 
insertion sequence transposition, root insertion 
sequence transposition, gene transposition, single 
and double crossover gene crossover and inversion.

Step 3: Termination
The program executes the steps above and 

repeats for a certain number of generations or 
satisfies the stopping conditions (i. e. , lowest error 
for population).  Finally, the best expression tree is 
found out and exported as the output of the problem.  
The flowchart of GEP is shown in Fig.  2, and its 
pseudo-code is presented in Fig.  3.
2. 2　Particle swarm optimization (PSO)

PSO is well-known as a robust metaheuristic 
algorithm that was successfully applied for different 
optimization problems [42-46].  It was proposed by 
Kennedy et al.  [47] based on the nature-based 
behaviors of swarms (e. g. , flock birds, bee, ant).  
These behaviors are simulated under the moving 

Fig. 2　The procedure of GEP algorithm

Fig. 3　Pseudo-code of GEP algorithm
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around the search space of the particles in the 
swarm.  Each individual is assigned a position (xi), 
and they fly around the search space with a velocity 
(vi).  For each position, each particle's fitness is 
evaluated and recorded, and the best fitness (Pbest) is 
shared with the other individuals.  Each particle 
keeps track of the best fitness and expands the search 
space to find out the better position (Gbest).  The 
searching process may be repeated many times to 
obtain satisfying values.  The optimization process of 
the PSO algorithm is illustrated in Fig.  4.  Further 
details of the PSO algorithm can be read in the 
references [48-54].

2. 3　 PSO-based GEP model for classifying 
rockburst in deep openings

As the primary purpose of this study, the GEP-

PSO framework is considered and proposed in this 
section, aiming to improve the classification model of 
rockburst, i. e. , GEP.  Accordingly, a mathematical 
equation will be offered based on a customized 
combination of PSO and GEP using the dependent 
variables.  In the first step, GEP is applied to build a 
mathematical with an acceptable ROC curve result.  
Subsequently, the established chromosomes are used 
as the main parts of the modified GEP models in the 

next step.  The chromosomes are then embedded in 
the PSO algorithm to determine a better performance 
of the ROC curve based on the correct structure of 
the GEP model, called the GEP-PSO model.  Note 
that the number of genes and linking functions are 
taken into account as the vital parameters of the GEP 
models, and the performance of the GEP models is 
highly dependent on these parameters.

Furthermore, in each GEP model, weights (or 
coefficients) are often determined based on the 
dataset's characteristics and the chromosomes, 
genes, and linking function.  However, weights can 
be adjusted to get better accuracy for the GEP 
models based on a specific number of genes and 
linking functions.

In order to embed the PSO algorithm to GEP 
models, an initial number of populations is necessary 
for the optimization process of the PSO algorithm, 
and they might repeat many times to obtain a better 
ROC curve value.  The PSO algorithm can modify 
the GEP model's coefficients to get higher ROC 
curve values.  The algorithm will stop when the best 
ROC value is reached (satisfied), or the searching is 
repeated with the specified iterations.  The 
framework is proposed in Fig.  5.

3　Data acquisition and processing

3. 1　Data acquisition
First of all, it is necessary to emphasize that 

rockburst is a dangerous phenomenon in deep 
underground mines and tunnels, as mentioned 
above.  It is difficult to observe these phenomena, 
and it is challenging to collect a dataset with multiple 
observations.  Therefore, many previous researchers 
efforted to collect and merge many cases from 
different deep underground mines and tunnels [27, 55-56] 
as a dataset.  Finally, 246 rockburst samples were 
collected in previous studies (Fig.  6), summarized by 
Zhou et al.  [30] and used to investigate and evaluate 
the performance of the proposed model in this study.

From the various datasets collected, there are 
12 variables recorded, including the depth of 

Fig. 4　Optimization procedure of the PSO algorithm
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underground caverns (X1), maximum tangential 
stress of the cavern wall (X2), uniaxial compressive 
strength (X3), uniaxial tensile strength (X4), stress 

concentration factor (X5), X6-X10 are indexes of rock 
mass related to X3 and X4 and are calculated as 
described in Eq.  （1） to Eq.  （5）, elastic strain index 
(X11), and the rockburst ability (Y).

Fig. 5　Proposed hybrid PSO-GEP algorithm for classifying rockburst

Fig. 6　Data collection of the rockburst events using microseismic systems and some results (Modified after Ma et al. [57])
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X 6 = X 3

X 4
（1）

X 7 = X 3 - X 4

X 3 + X 4
（2）

X 8 = X 3 × X 4

2 （3）

X 9 = X 3 × X 4

2 （4）

X 10 = X 3 × X 4

2 （5）

3. 2　Processing the collected rockburst dataset
Before developing the classification models for 

rockburst, the collected dataset should be processed 
and prepared to ensure the dataset's generalized 
characteristics and avoid overfitting the models.  An 
analysis shows that some values in the first variable 
are missed, and they are variance account for 13% of 
the whole number of observations, as illustrated in 
Fig.  7.

In this case, there are three options for solving 
the X1 variable, including removing the entire of this 
variable, removing rows with missing values, or 
filling the missing values.  However, given the 
effects of the input variables, many researchers 
indicated that X1 significantly impacts the probability 
of rockburst in deep openings.  Therefore, the X1 
variable was kept on.  Also, to avoid reducing the 
dataset's size, the rows with missing values were 
kept on as well.  Finally, a data processing technique 
has been applied to fill the missing values to the 
collected dataset, namely "mean column values" [58].  
The processed dataset's input variables were then 
visualized as a scatter plot to show their 
characteristics (Fig.  8).

Based on the scatter plot matrix in Fig.  8, we 
can observe the randomness, distribution, and 
correlation between the input variables.  
Interestingly, the characteristics of the X8, X9, X10, 
and X11 variables are highly similar, and even with 
the same distributions, as shown in the crop of 
Fig.  9 below.  Accordingly, we can see that the 
correlation between X10 and X11 is strong similar to 
the correlation between X9 and X11.  In addition, the 
correlation between X8 and X11 is not strongly like the 
X9 and X10, but it is also high similarity compared to 
pairs of X10-X11 and X9-X11.  Therefore, they should 
be removed to ensure the models' accuracy.  Finally, 
this study only used seven input parameters (from X1 
to X7) to forecast and classify the rockburst hazards.

4　 Development of the models and 
results

To develop the GEP-PSO model for forecasting 
and to classify the rockburst ability, the flowchart in 
Fig.  4 was applied.  Accordingly, an initial GEP 
model was developed first, and the parameters of the 
PSO algorithm was set up to optimize the weights of 
the GEP model.  The initial parameters of the GEP 
model were set up as follow:

Number of chromosomes: 30
Head size: 8
Number of genes: from 1 to 4
Fitness function: ROC measure
Strategy: optimal evolution
Genetic operators: Mutation 0. 001 38; Inversion 

0. 005 46;
Constants per gene: 10
Lower and upper bounds: [-10, 10]
Before developing the GEP-PSO models, the 

parameters of the PSO algorithm, including local 
coefficient (c1), global coefficient (c2), weight min 
factor (w1) and weight max factor (w2) were also 
setup as 1. 2, 1. 2, 0. 4 and  0. 9, respectively.

In GEP models, there are the initial parameters 
described above.  The number of genes and linking 
functions are crucial criteria to decide on the forecast 
models' accuracy.  Therefore, this study developed 
13 different GEP models based on different genes 

Fig. 7　Processing the missing data of rockburst
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(from 1 to 4) and linking functions (e. g. , additional, 
subtraction, multiplication and division).  The PSO 

algorithm then optimized these 13 GEP models and 
they are described in Eq.  （1） to Eq.  （13）, as follow.

Model 1: This model was developed based on 
only one gene and without any linking functions.  
The PSO algorithm optimized the weights of the 
model, and it is described Eq.  （6）.

Gene 1: exp ( X 3
5 × X 6 + ( )X 7 × X 4

4 )- X 5

Rockburst=exp ( X 3
5 × X 6 + ( )X 7 × X 4

4 )- X 5  （6）

Model 2: This model was developed based on 
two genes and the addition linking function.  The 
PSO algorithm optimized the weights of the model, 
and it is described in Eq.  (7).

Gene 1: lg (X 3
2 )

Fig. 8　Scatter plot matrix of the processed dataset

Fig. 9　A crop of scatter plot matrix and analysis of the 
similarities and differences between X8-X11 variables
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Gene 2: tan（sin（（arctan X6× X 1）-( X 2
4 +X5）)）

Rockburst =log ( X 3
2 )+ tan ( sin ( ( arctan  X 6 ×

X 1 )-( X 2
4 + X 5 ) ) ) （7）

Model 3: This model was developed based on 
two genes and the subtraction linking function.  It is 
worth noting that these genes are different from the 
genes developed in the Model 1 and Model 2.  The 

PSO algorithm optimized the weights of the model, 
and it is described in Eq.  （8）.

Gene 1:

( - 3.965X 5) 4 × X 3
7 × ((X 6 - 2.544)+

tan ( - 2.248) )

Gene 2: ( )-0. 841X 3
2

-2. 862X 6 × 2. 712 ×exp（arcth (X4）)

Rockburst = [ ( - 3.965X 5) 4 × X 3
7 × ((X 6 - 2.544)+ tan ( - 2.248) ) ]×

é

ë

ê
êê
ê
ê
ê ( )-0.841X 3

2

-2.862X 6 × 2.712 × exp ( arctan ( X 4 ) )
ù

û

ú
úú
ú （8）

Model 4: This model was developed based on 
two genes and the multiplication linking function.  It 
is worth noting that these genes are different from the 
genes which were developed in the Model 1, Model 
2 and Model 3.  The PSO algorithm optimized the 
weights of the model, and it is described in Eq.  （9）.

Gene 1: (X 2 - (X 4 + 16. 11) )- 22. 727
X 4 - 10. 54

Gene 2: cos ( )X 6 - X 2

X 1

53

Rockburst =é
ë
êêêê(X 2 - (X 4 + 16.11) )-

                 22.727
X 4 - 10.54

ù
û
úúúú× cos ( )X 6 - X 2

X 1

53

（9）

Model 5: This model was developed based on 
two genes and the division linking function.  It is 
worth noting that these genes are different from the 
genes which were developed in the Model 1 to Model 
4.  The PSO algorithm optimized the weights of the 
model, and it is described in Eq.  （10）.

Gene 1: 1

1
X 2

53
× exp ( X 2

5 )

Gene 2: sin ( )-4. 558X 2

0. 198

Rockburst = 

1

1
X 2

53
× exp ( )X 2

5

sin ( )-4.558X 2

0.198

（10）

Model 6: This model was developed based on 
three genes and the addition linking function.  It is 
worth noting that these genes are different from the 
genes developed in the Model 1 to Model 5.  The 
PSO algorithm optimized the weights of the model, 
and it is described in Eq.  (11).

Gene 1: X 5 - é
ëcos ( tan ( X 6 ) )× ( X 7

5 - X 5
4 ) ùû

Gene 2: lg ( X 3 )
Gene 3:

ln ( ( )X 3 + ( )X 7 + 1.698 + ( )-6.643 - X 2
35 )

Rockburst =

X 5 - é
ëcos ( tan ( X 6 ) )× ( X 7

5 - X 5
4 ) ùû+ lg (X 3)+

ln ( ( )X 3 + ( )X 7 + 1.698 + ( )-6.643 - X 2
35 )

（11）
Model 7: This model was developed based on 

three genes and the subtraction linking function.  It is 
worth noting that these genes are different from the 
genes which were developed in the Model 1 to Model 
6.  The PSO algorithm optimized the weights of the 
model, and it is described in Eq.  （12）.

Gene 1: X 2

( )arctan ( )( )arctan ( )( )lg ( )X 3
2

3
3

Gene 2: tan (X 4)

Gene 3: X 1 + ( )tan ( )X 3
3 + ( )X 2 - 5. 565

45
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Rockburst =
X 2

( )arctan ( )( )arctan ( )( )lg ( )X 3
2

3
3 - tan X 4 -

X 1 + ( )tan ( X 3
3 )+ ( )X 2 - 5.565

45

（12）

Model 8: This model was developed based on 
three genes and the multiplication linking function.  It 
is worth noting that these genes are different from the 
genes which were developed in the Model 1 to  

Model 7.  The PSO algorithm optimized the weights 
of the model, and it is described in Eq.  (13).

Gene 1: X 5

Gene 2:

cos (arctan ((X 2 - 619.415) 3 × ((X 1 +

1.149)× (X 6 + 619.415) ) ) )
Gene 3:
X 2 + [ cos ( tan ( X 4 ) )× (2X 6 + (8.19 - X 4) ) ]
Rockburst =

X 5 × cos (arctan ((X 2 - 619.415) 3 × ((X 1 + 1.149)× (X 6 + 619.415) ) ) )×

X 2 + [ cos ( tan ( X 4 )× (2X 6 + (8.19 -( X 4 )) ) ]
（13）

Model 9: This model was developed based on 
three genes and the division linking function.  It is 
worth noting that these genes are different from the 
genes which were developed in the Model 1 to  
Model 8.  The PSO algorithm optimized the weights 
of the model, and it is described in Eq.  (14).

Gene 1: ( lg ( sin ( X 6 )
X 1 + 8. 757 )

2) 2

- X 4

Gene 2: ( - 2. 68 X 3

1. 65 + ( - 667. 169 - (X 5 ×

X 1) ) ) 3

Gene 3: (arccos (cos (cos ( X 4

4. 225 )
4) ) ) 4

Rockburst =

( )lg ( )sin X 6

X 1 + 8.757

2 2

- X 4

( )-2.68 X 3

1.65 + ( )-667.169 - ( )X 5 × X 1

3

× ( )arccos ( )cos ( )cos ( )X 4

4.225

4
4 （14）

Model 10: This model was developed based on 
four genes and the addition linking function.  It is 
worth noting that these genes are different from the 
genes which were developed in the Model 1 to Model 
9.  The PSO algorithm optimized the weights of the 
model, and it is described in Eq.  (15).

Gene 1: X 7

Gene 2: X 4
5

Gene 3: ln ( ln ( X 1 ))
Gene 4: 1. 506X 7 × exp ( )X 4

3
4

Rockburst =

X 4
5 + ln ( ln ( X 1 ))+ 1.506X 7 × exp ( )X 4

3
4

  （15）

Model 11: This model was developed based on 
four genes and the subtraction linking function.  It is 
worth noting that these genes are different from the 

genes which were developed in the Model 1 to Model 
10.  The PSO algorithm optimized the weights of the 
model, described in Eq.  （16）.

Gene 1: (X 3 + X 2 + X 6)× (exp ( 1
X 5 ) )

Gene 2: X 5

Gene 3: é
ë
ê
êê
ê8. 569 - ((( 6. 143X 5

5 ) 3)× X 2) ùûúúúú
3

Gene 4: (X 6 - 552. 579)× (X 6 - (X 1 + X 2) )
Rockburst =
é

ë

ê
êê
ê
ê
ê(X 3 + X 2 + X 6)× (exp ( 1

X 5 ) ) ùûúúúú- X 5 -

[ (X 6 - 552.579)× (X 6 - (X 1 + X 2) ) ]
（16）

Model 12: This model was developed based on 
four genes and the multiplication linking function.  It 
is worth noting that these genes are different from the 
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genes which were developed in the Model 1 to Model 
11.  The PSO algorithm optimized the weights of the 
model, described in Eq.  （17）.

Gene 1: (( X 5 - X 4)× arctan (X 1 + 0. 297) ) 2

Gene 2: ( tan (X 3
4 ) ) 3

+ (X 2 - X 5)+ sin (X 4)
Gene 3: X 6

Gene   4: [ cos (-12. 269 ((X 7+X 4)×X 5) )-X 5 ] 2

Rockburst = (( X 5 - X 4)× arctan (X 1 + 0.297) ) 2

×

( tan (X 3
4 ) ) 3

+ (X 2 - X 5)+ sin (X 4)× X 6 ×

[ cos ( - 12.269 ((X 7 + X 4)× X 5) )- X 5 ] 2

（17）

Model 13: This model was developed based on 
four genes and the division linking function.  It is 
worth noting that these genes are different from the 
genes which were developed in the Model 1 to Model 
12.  The PSO algorithm optimized the weights of the 
model, and it is described in Eq.  （18）.

Gene 1: tan ((sin ( tan (cos ( X 5 )) ) ) 3)
Gene 2: 1

tan ( )X 3

X 2
+ 6. 482

- 2X 3

Gene 3: X 4 - sin ( ln ( X 7 ))
Gene 4: X 6

7

Rockburst =
tan ( )( )sin ( )tan ( )cos ( X 5 )

3

æ

è

ç

ç

ççç

ç

ç

ç
ö

ø

÷

÷

÷÷÷

÷

÷

÷1

tan ( )X 3

X 2
+ 6.482

- 2X 3 × ( )X 4 - sin ( )ln ( X 7 ) × X 6
7

（18）

Once the GEP-PSO equations were well-
established for forecasting rockburst, their 
performance was computed and evaluated through 
various metrics, such as accuracy, positive predictive 
value (PPV), recall, correl, F1 measure, and area 
under the ROC Curve (AUC).  Nevertheless, it is 
challenging to conclude which model is the best in 
forecasting rockburst ability based on various 
metrics.  Therefore, a ranking method was applied to 
classify and rank the models' performance.  The 
details of the performances are shown in Table 1 and 
Table 2.

5　Discussion

The PSO algorithm was applied to optimize 13 
GEP models for classifying the rockburst 
susceptibility in deep openings.  The experimental 
results in Table 1 and Table 2 proved the high 
effectiveness of the proposed GEP-PSO models.  Of 
those, the GEP-PSO models with multiple genes 
tend to better than the GEP-PSO model with only 
one gene.  Nevertheless, not all models with multiple 
genes outperform the model with only one gene.  The 
GEP-PSO model 1 with only one gene provided an 
unstable performance on the training and testing 

phase.  Thus, it can be seen that the GEP-PSO 
model with only one gene and without linking 
function is unstable for classifying rockburst.

Considering the GEP-PSO models with multiple 
genes and different linking functions, it can be seen 
that the GEP-PSO model 8 with three genes and the 
multiplication linking function was used, provided the 
best performance on both the training and testing 
phases (i. e. , Accuracy=89. 63, PPV=64. 86, 
Recall=85. 71, Correl=0. 450, F1 measure=
0. 738 and AUC ROC=0. 902, and the total ranking 
of 58 on the training dataset; Accuracy=80. 49, 
PPV=50. 00, Recall=68. 75, Correl=0. 255, F1 
measure=0. 529, AUC ROC=0. 807, and the total 
ranking of 54 on the testing dataset).  Although the 
GEP-PSO models' performances are different; 
however, their accuracy is high and strongly 
improved with the support of the PSO algorithm, 
compared with that of other models in the previous 
studies [30, 55].  Fig.  10 shows the ROC Curve 
performance of the GEP-PSO models developed in 
this study to classify rockburst in different 
underground projects.

It can be observed that the GEP-PSO model 4 
with two genes and the multiplication linking function 
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provided the poorest ROC Curve performance even 
though it used more than one gene and linking 
function.  This finding indicates that the GEP-PSO 
model with two genes and the multiplication linking 
function should not be used for classifying rockburst 
in this study since its poor and unstable performance.  
The other GEP-PSO models are also potential 
models, and their implementation is acceptable.

For further assessment of the proposed hybrid 
PSO-based GEP models for classifying rockburst, 
the classification scatter plots of 13 proposed models 
were draw on the testing dataset based on the false 
negative (FN), false positive (FP), true negative 
(TN), true positive (TP), and the cutoff points of the 
models, as shown in Fig.  11.  Accordingly, the best 
model provided the FN, FP, TN and TP on or 
nearest the cutoff points.  In other words, the best 
convergence of FN, FP, TN, TP and the cutoff 
points, the best model for classifying rockburst.

（a） Model 1

（b） Model 2

（c） Model 3

（d） Model 4

（e） Model 5

（f ） Model 6

Fig. 10　ROC Curve of the GEP-PSO models for 
classifying rockburst
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（g） Model 7

（h） Model 8

（i） Model 9

（j） Model 10

（k） Model 11

（l） Model 12

（m） Model 13

Fig. 11　Classification scatter plot of the proposed

hybrid models

From the classification scatter plot of the 
proposed hybrid models in Fig.  11, it is clear that 
the proposed hybrid GEP-PSO models provided the 
classification systems with pretty good accuracy.  
The Model 8 and Model 9 provided the highest 
accuracy in classifying rockburst phenomenon with 
greater TN and TP points.  Taking a closer look at 
Fig.  11（h） and Fig.  11（i）, it can be seen that the 
Model 8 model provided better accuracy than those 
of the model 9 with greater TN and TP points.  The 
model's accuracy based on the dummy variable is 
very high, with the lowest range of the model and 
the cutoff point is approximate 0.  These findings 
indicated that the Model 8 is the best expert system 
for classifying rockburst phenomenon in underground 
openings.  A comparison of the obtained results in 
this study with that of the previous studies based on 
the same dataset is shown in Table 3.

Based on the comparisons of Table 3, we can 
see that this study also used seven input parameters; 
however, the last input variable is different from the 
previous studies.  X7 variable was used instead of 
X11 in the previous studies based on the data 
analyses of the collected database.  This finding 
indicated that the X7 variable should be used instead 
of the X11 variable to get better performance with the 
proposed GEP-PSO model.

34



第  2 期

6　Validation of the models
To demonstrate the selected hybrid GEP-PSO 

model's accuracy, six other observations were used 
as the unseen dataset in practice.  It is worth noting 
that these observations have not been used to develop 
the models and tested on the testing dataset.  The 

input parameters of these six observations were 
entered into the selected hybrid model to validate the 
outcome predictions.  Finally, they were compared 
with the experimental results to decide the developed 
expert systems.  The input parameters of the 
validation dataset and the forecasted results are 
shown in Table 4.

Based on the forecasted results in Table 4, it 
can be seen that the classification accuracy and error 
of the selected GEP-PSO model is pretty high, with 
an accuracy of 83. 33% (i. e. , 5 correct predictions 
and 1 wrong prediction).  The predicted results on the 
validation dataset are summarized in Table 5 through 
the classification accuracy and error, and confusion 
matrix.  These results demonstrated that the 
proposed and selected GEP-PSO model is a potential 
expert system to predict the practice's rockburst 
phenomenon.  It is a useful tool to prevent the 
rockburst tendency.

7　Conclusions and remarks

Rockburst hazard is a geological phenomenon 
encountered in deep openings and tunnels that lead to 
injuries and deaths, damaged equipment, and 
deformation of underground/tunnel faces.  Due to 
those adverse effects, soft computational models for 
predicting and classifying rockburst grades are 
considered potential approaches to early warning the 
rockburst susceptibility and evaluating the intensity 
of rockburst.  This study proposed a novel soft 

computational model, i. e. , the GEP-PSO model, 
to predict and classify rockburst tendency with high 
accuracy.  The results showed that the accuracy of 
the proposed GEP-PSO model was significantly 
improved based on the corrected values of missing 
values and the number of genes and linking functions 
of the GEP model.  Besides, the PSO algorithm also 
played an essential role in improving the accuracy of 

Table 3　Comparison of the proposed GEP-PSO model (of this work) and previous models (by previous researchers)

References
[30]
[59]

This study

Model
GBM

Cloud model with rough set
GEP-PSO

Inputs
X1, X2, X3, X4, X5, X6, X11

X1, X2, X3, X4, X5, X6, X11

X1, X2, X3, X4, X5, X6, X7

Accuracy
76. 6%
71. 05%
80. 49%

Table 4　Validation dataset and the forecasted results of the proposed GEP-PSO model

X1

500
535
458
605
780
850

X2

25. 34
47. 06
34. 66
21. 08
68. 25
77. 62

X3

90      
125      

85. 96
80. 50
92. 35

115. 20

X4

6. 55
7. 50
8. 12
5. 44
7. 12
8. 55

X5

0. 52
0. 36
0. 65
0. 28
0. 88
0. 76

X6

16. 25
22. 15
18. 22
25. 35
14. 25
28. 19

X7

0. 83
0. 90
0. 85
0. 95
0. 88
0. 90

Y

0
0
1
0
1
1

GEP-PSO
0
0
0
0
1
1

Match
OK (TN)
OK (TN)

Wrong (FN)
OK (TN)
OK (TP)
OK (TP)

Table 5　Summary of the predicted results on the 
validation dataset

Validation data summary

Classification Accuracy & Error

Correct:
Wrong:

Confusion matrix

Yes (actual)
No (actual)

Confusion matrix (in percentages)

Yes (actual)
No (actual)

Counts
5
1

Yes (predicted)
2
0

Yes (predicted)
33. 33%
0. 00%

Percent
83. 33%
16. 67%

No (predicted)
1
3

No (predicted)
16. 67%
50. 00%
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the GEP model.  The obtained results indicated that 
the proposed GEP-PSO model provided a superior 
accuracy compared with that of the published 
classification models.  In conclusion, the GEP-PSO 
model should be used as an expert system in practical 
engineering to warn the rockburst susceptibility and 
prevent this phenomenon from reducing this severe 
problem's losses.
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