期刊信息
主管单位:教育部
主办单位:重庆大学
主  编:刘汉龙
地  址:重庆市沙坪坝区沙正街174号 重庆大学期刊社 《土木与环境工程学报》编辑部
邮政编码:400044
电  话:023-65111322;023-65111863
电子邮件:xuebao@cqu.edu.cn
国际标准刊号:ISSN 2096-6717
国内统一刊号:CN 50-1218/TU
邮发代号:78-48
每期定价:¥20
全年定价:¥120
访问统计
  • 您是本站第3424989位读者
  • 今日访问881
引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 117次   下载 60 本文二维码信息
码上扫一扫!
分享到: 微信 更多
PSO-SVM与BP神经网络组合预测供水系统余氯的方法
毛湘云, 徐冰峰, 孟繁艺
昆明理工大学 建筑工程学院, 昆明 650500
摘要:
针对余氯量在供水系统内非线性变化的特性,建立了PSO-SVM与BP神经网络组合模型对管网末端余氯进行预测分析。该模型通过粒子群优化算法(PSO),对SVM的特性参数进行优化;采用BP神经网络对模型进行残差修正。通过对单一的BP模型和SVM模型、组合模型的预测精度进行分析。结果表明:组合模型预测比BP和SVM单一预测均方误差分别降低了62.30%、75.29%,平均相对误差降低了55.03%、54.27%。综上所述,该模型具有强大的非线性拟合能力,预测精度高,运行稳定性强,对供水企业控制余氯的投加量和设置二次加氯点有一定的指导作用。
关键词:  余氯  支持向量机  粒子群算法  神经网络  组合模型
DOI:10.11835/j.issn.2096-6717.2019.084
分类号:TU991.33
基金项目:
Prediction of residual chlorine in water supply system by PSO-SVM and BP neural network combined model
Mao Xiangyun, Xu Bingfeng, Meng Fanyi
Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, P. R. China
Abstract:
Due to the nonlinearity of residual chlorine in the pipe network, a PSO-SVM and BP neural network combined model was developed to prediction of residual chlorine.This model through particle swarm optimization algorithm (PSO) to optimization the characteristics parameter of the SVM, and use the BP neural network model to residual error correction. The prediction precision of combined model was ananysed by comparing the single prediction model of BP and SVM. The results show that compared with the single prediction of BP and SVM, the mean square error of the combined model decreased by 62.30% and 75.29% respectively, but the average relative error decreased by 55.03% and 54.27% respectively. In a conclusion, the combined model had strong nonlinear fitting capability, high prediction accuracy, and strong operation stability. This model plays an important role in controlling the residual chlorine dosing and setting the secondary chlorination point for water supply enterprise.
Key words:  residual chlorine  support vector machines  particle swarm optimization  neural networks  combined model
Copyright@ 2008 All Rights Reserved.
关注微信二维码