期刊信息
主管单位:教育部
主办单位:重庆大学
主  编:刘汉龙
地  址:重庆市沙坪坝区沙正街174号 重庆大学期刊社 《土木与环境工程学报》编辑部
邮政编码:400044
电  话:023-65111322;023-65111863
电子邮件:xuebao@cqu.edu.cn
国际标准刊号:ISSN 2096-6717
国内统一刊号:CN 50-1218/TU
邮发代号:78-48
每期定价:¥20
全年定价:¥120
访问统计
  • 您是本站第3656044位读者
  • 今日访问1162
引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 62次   下载 17 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于外海环境预报的近岸岛礁桥址区波高ANN推算模型
魏凯1, 林静1, 李明阳2
1.西南交通大学 土木工程学院, 成都 610031;2.中铁二院工程集团有限责任公司, 成都 610031
摘要:
中国跨海桥梁多建于近岸岛礁海域,桥址区的波浪要素随时空演变复杂。桥址区波高的准确推算对于桥梁结构设计和施工组织具有十分重要的意义。提出一种基于外海环境预报数据的近岸岛礁桥址区波高人工神经网络(ANN)推算模型,并以平潭海峡公铁两用大桥桥址海域为研究对象,运用ANN算法中常用的BP神经网络对外海海洋预报台提供的波高、风速数据以及在桥址区实测波高数据进行训练,建立二者之间的映射关系及ANN推算模型。为验证推算模型的可行性和有效性,运用上述模型对桥址区连续80 d的海浪波高进行推算,通过对比前人模型和实测数据发现,推算波高和实测波高的变化趋势基本吻合,均方根误差满足预测要求,获得了理想的预测效果。研究表明,提出的波高ANN推算模型可以利用外海预报信息进行近岸岛礁桥址区的波高推算,且建模过程较为简单。
关键词:  波高  人工神经网络  近岸岛礁桥址区  外海环境  跨海桥梁
DOI:10.11835/j.issn.2096-6717.2019.115
分类号:TU528.41
基金项目:国家自然科学基金(51708455)
ANN model of wave height in nearshore island area for sea-crossing bridge based on open ocean environmental forecasting
Wei Kai1, Lin Jing1, Li Mingyang2
1.School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China;2.China Railway Eyuan Group Co., Ltd., Chengdu 610031, P. R. China
Abstract:
Sea-crossing bridges in China are mainly built in nearshore island area where wave condition varies spatially. The accurate estimation of the wave height in the bridge site is of great significance for bridge design and construction organization. An artificial neural network (ANN) estimation model of wave height in nearshore island area was developed based on open ocean environmental forecasting data. Pingtan Strait sea-crossing bridge site was selected as the research object. The BP neural network commonly used in the ANN was adopted to train the data provided by the open ocean forecasting station and the measured wave height data in the bridge site area. In order to verify the feasibility of the model, the wave height in the bridge site for 80 consecutive days was estimated. By comparing the results of previous model and the measured data, it is found that the trend of the estimation and the measured value is generally consistent. The root mean square error satisfies the prediction requirements and the ideal prediction effect is obtained. The research showed that the proposed ANN estimation model can use the open ocean forecasting information to effectively estimate the wave height of the nearshore island area for sea-crossing bridge with a relatively simple modeling process.
Key words:  wave height  ANN  nearshore island area  open ocean environment  sea-crossing bridge
Copyright@ 2008 All Rights Reserved.
关注微信二维码