Abstract:The dynamic elasticplastic finite element method was used to study the seismic performance of a slope protected by a soil nailing retaining wall. On the basis of working in parallel and interaction between loess and a flexible retaining wall, a 3D nonlinear finite element method (ADINA) also was established. Rational earthquake excitation and damping were discussed for geological engineering. Horizontal and vertical excitations were considered simultaneously in the analyses. A model capable of simulating the nonlinear static and dynamic elasticplastic behavior of soil was used to model the soil, and a bilinear elasticplastic model having hardening behavior was used to model the soil nailing. A friction element was employed to describe the soil structure interaction behavior. Our research focused on the seismic performance of the horizontal and vertical slope deformation, soil nailing axial force, and earth pressure subjected to horizontal and vertical excitations. The results show that the seismic performance of slope protected by soil nailing is good; soil nailing axial force increases after an earthquake; permanent slope displacement occurs during an earthquake; and the peak earth pressure distribution during an earthquake is similar to the earth pressure before the earthquake. These conclusions can provide references for seismic analyses and design in soil nailing engineering.