Abstract:The mechnical characteristics of concrete is sensitive to the strain rate and it is crucial to consider the effect of load rates on the behavior of reinforced concrete (RC) structures subjected to dynamic loads such as severe earthquakes. In this study, numerical simulations on the dynamic behavior of typical RC column specimens under dynamic loadings with different load rates were performed. Concrete constitutive model considering the strain rate effects proposed by the CEB code was employed with a fiber model to characterize the nonlinear strain rate dependent behavior of RC columns. The developed dynamic fiber element model was validated by comparing the simulated results of four RC column specimens with the fast loading test results. Results show that the developed fiber element model can predict the behavior of RC columns with acceptable accuracy. After valiating the proposed fiber elemen model considering the strain rate effect, the load carrying capacity of different RC columns with various longitudinal reinforcement ratios and volumetric stirrup ratios were simulated. Results show that the trends of the influences of longitudinal reinforcement ratios and volumetric stirrup ratios on the load carrying capacity of the RC columns under dynamic loadings are different.