Stratification and Bearing Capacity Prediction Method Based on BP Neural Network for Foundation in Huaibei Plain
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    According to the features of stratification and obvious inhomogeneity in geological soil in Huaibei plain, BP neural network prediction method for stratification and bearing capacity calculation of multiple cross-bedded foundation was proposed. By comparing the results of drill sampling, static cone penetration tests and screw plate tests, plate loading tests, penetration resistance ps value was found as an evaluation index for stratification and bearing capacity prediction of cross-bedded foundation. Moreover, gradient descent algorithm and conjugate gradient algorithm BP neural network models were obtained, and the calculation results of the two algorithms were comparatively analyzed. The results show that penetration resistance value can be taken as an evaluation index for stratification and bearing capacity prediction of cross-bedded foundation in Huaibei plain. Gradient descent algorithm and conjugate gradient algorithm BP neural network models have good results for soil identification and bearing capacity determination, which can meet the accuracy requirements of actual engineering. However, the computational efficiency of gradient descent algorithm is significantly lower than that of conjugate gradient algorithm.

    Reference
    Related
    Cited by
Get Citation

戴张俊,余飞,陈善雄,罗红明.淮北平原地基分层与承载力的BP网络预测方法[J].土木与环境工程学报(中英文),2013,35(3):18~24

Copy
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: June 07,2013
  • Published:
Article QR Code