Potential and Energy Dissipation-Based Seismic Damage Evaluation of Ancient Timber Structure Strengthened with CFRP
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The aim is to evaluate the seismic properties of ancient timber structure after strengthening and analyze the failure process and corresponding failure state. Based on the hysteretic behavior and energy dissipation principle of the dovetail column-frame strengthened with CFRP and Arches Brackets under the low reversed cyclic loading, the “potential of destruction-resisting” of the two energy-consuming components is obtained. The dissipated energy of each energy-consuming component under the various earthquake conditions is calculated combining with the shaking table test of ancient timber structure. The model of seismic damage evaluation of the two energy-consuming components is established on the basis of the “potential of destruction-resisting” and the dissipated energy. By means of the energy distribution coefficient, the relationship of the failure state between energy-consuming components and overall strengthened structure is discovered, and the model of seismic damage evaluation of the overall structure under the various earthquake conditions is presented. With the derived model of seismic damage evaluation, the failure coefficient of the energy-consuming components and the overall strengthened structure is quantitatively calculated. According to the failure state, the corresponding damage grade of overall strengthened structure is obtained. The results can provide a reliable theoretical basis for predicting the destruction before earthquake and re-reinforcement to the strengthened ancient timber structures after earthquake.

    Reference
    Related
    Cited by
Get Citation

薛建阳,吴占景,张风亮,赵鸿铁,刘祖强,王豆豆.碳纤维布加固古建筑木结构基于结构潜能和能量耗散地震破坏评估[J].土木与环境工程学报(中英文),2013,35(6):103~111

Copy
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: December 09,2013
  • Published:
Article QR Code