Influence of Transverse Flexural Crack on Chloride Penetration in Concrete
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The mechanism for chloride penetration in cracked concrete and its major impact factors were analyzed. As a result, a revised chloride diffusion model based on Fick's Law was built by dual porous medium model. Then several cracked reinforced concrete beams self-anchored with sustained flexural loads were immersed in the 5% NaCl solution with the condition of dry-wet cycles. After 15 times of dry-wet cycles, the rapid chloride testing (RCT) was used for the determination of chloride ion content of the powder at each cracked sections. The test results show that: 1) with the condition of dry-wet cycles, the chloride content will occur a peak in the surface 20mm concrete, so the depth for surface convection zone can be assumed to be 15~20 mm; 2) when the crack width is less than 0.3mm, the equivalent chloride diffusion coefficient increases steadily, which agrees well with model's prediction; when the crack width is larger than 0.3mm, the equivalent chloride diffusion coefficient augments rapidly and influence of convection on chloride penetration becomes more significant; 3) the deterioration factor for equivalent chloride diffusion coefficient in flexural cracked concrete is directly correlative with crack width, which can be expressed by second order power function or separate function.

    Reference
    Related
    Cited by
Get Citation

陆春华,张邵峰,刘荣桂,崔钊玮.横向弯曲裂缝对混凝土内氯离子侵蚀作用的影响[J].土木与环境工程学报(中英文),2013,35(6):124~130

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: December 09,2013
  • Published:
Article QR Code