Abstract:A vehicle-track-subgrade coupling dynamics vertical model was applied to study the probability distribution characteristics of dynamic influence coefficients φi of ballast track subgrade with vertical profile irregularity. According to the relationship between cumulative deformation state characteristics and loading levels revealed by model test of typical coarse-grained soil filler of subgrade under cyclic loading, it is found that the embankment below subgrade is in a time-independent deformation state, and subgrade filler is in weak-time effect state. Using the dynamic strength of subgrade structure, long-term dynamic stability and cyclic deformation as design control indicators, the technical conditions of the high-speed railway ballast track subgrade structure were analyzed. The study shows that:lg φi which characterize the degree of subgrade bearing the dynamic effect of the train along the line longitudinal direction, obeys the normal distribution; the cumulative deformation state of each structural layer of the subgrade under train load is closely related to the nature of the filler; the subgrade structure's long-term dynamic stability is the main design control factor. Accordingly the technical standards for 350km/h high-speed rail double-layer subgrade structure of ballast track was proposed.