Abstract:In order to solve the two-dimensional dynamic coupled thermoelasticity problem more effectively, a novel numerical method based on the meshless natural neighbour Petrov-Galerkin method is proposed in this study. Only a group of scattered nodes are required in this method, to construct approximation function and therefore complex meshing and disadvantage of mesh distortion are effectively eliminated. In comparison with the moving least-squares (MLS) approximation used widely in meshless methods, the natural neighbour interpolation requires no complex matrix inversions and no artificial intermediate parameters. The equations of motion and transient heat conduction equations of the coupled thermoelasticity interaction on each other and therefore these equations must be solved simultaneously. After spatially discretization, a series of second-order ordinary differential algebraic equations is obtained, which is solved by the Newmark method to obtain the numerical temperature and displacement field directly.