Exploration of error sources of vision displacement monitoring technique by EEMD-FastICA algorithms
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    With the increasing application of the vision measurement technique in the civil engineering structure health monitoring,more attention has been paid to the long-term all-weather performance of vision measurement.To explore the main error source of vision measurement technique,a new error source analysis method based on Blind Source Separation (BSS) is proposed:First, in order to construct the multi-channel signals as the input signals of the blind source separation model, Ensemble Empirical Mode Decomposition (EEMD) was used to expand the observation signal channels; then, Fast Independent Component Analysis (FastICA) algorithm was used to separate the input signals, to obtain the FastICA components; next,the correlation between each component and environmental factors such as temperature, light irradiation, etc., was analyzed to explore the error source corresponding to the principal component; finally,by using the inverse transformation of the mixed matrix obtained by the separation algorithm, the proportion of the specified error source components was calculated and the main error source of the camera measurement was determined. The error data of long-term vision measurement were analyzed by blind source separation algorithm. The results show that this algorithm has good separation effect and can effectively separate and extract the displacement error components caused by each error source. In long-term vision measurement, temperature is the primary error source.

    Reference
    Related
    Cited by
Get Citation

周华飞,蒋贤辉,余忆彬,王哲.基于EEMD-FastICA的位移摄像测量误差源探究[J].土木与环境工程学报(中英文),2022,44(3):20~28

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 31,2021
  • Revised:
  • Adopted:
  • Online: February 16,2022
  • Published:
Article QR Code