Abstract:This paper presents a vector-valued fragility analysis of shallow tunnel in soft soil deposits. Firstly, numerous nonlinear dynamic analyses were performed for soil-tunnel system, and based on the calculated results, a series of 15 intensity measures (IMs) were all tested based on their efficiency, practicality and proficiency, according to the regression analyses between the IMs and the damage index (DI) for the examined tunnel.The peak ground acceleration (PGA) at the ground surface was demonstrated to be optimal IM, followed by peak ground velocity (PGV) and acceleration spectrum intensity (ASI). Then, the scalar-valued fragility curve was developed in terms of optimal IM (PGA) for shallow tunnel. Finally, the fragility surfaces based on vector-valued IMs were developed to obtain the exceeding probability of various damage states as a function of two IMs (PGA, ASI). This study reveals that the scalar-valued fragility curves cannot represent the effect of a second IM on the seismic behavior of the tunnel, and the development of vector-valued fragility surfaces lead to more reasonable evaluations of seismic performance of tunnels.