2025年11月13日 周四
Efficient interpolation method for 2D non-stationary CPT data using Gibbs sampling and compressive sampling
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [40]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    Cone penetration test (CPT) is commonly used to determine the stratification of underground soil and the mechanical parameters of soils in stratification. Due to time, resources and/or technical constraints, the number of CPT soundings along with a horizontal direction is generally limited. In such cases, spatial interpolation or stochastic simulation methods is a necessary choice to estimate CPT data at un-sampled locations. This paper proposes an efficient method for simulating CPT data at un-sampled locations directly from a limited number of CPT records. The approach couples the framework of 2D Bayesian compressive sensing with Gibbs sampling, where Kronecker product is introduced for facilitating its simulation efficiency. Both numerical simulations and case histories are used to illustrate the presented method.Results show that the proposed method is reasonable, which can not only reflect the non-stationary characteristics of the data, but also significantly reduce the time cost and have reasonable adaptability after using the sequential updating technique. In addition, the accuracy and reliability of interpolation are negatively and positively proportional to the distance from existing CPT soundings and the number of existing CPT soundings, which demonstrates the data-driven nature of the proposed method.

    Reference
    [1] MATTHEWS M C, SIMONS N E. Site investigation:A handbook for engineers[M]. Hoboken, New Jersey, U.S:Wiley-Blackwell, 1995.
    [2] 张继周, 缪林昌, 王华敬. 土性参数不确定性描述方法的探讨[J]. 岩土工程学报, 2009, 31(12):1936-1940. ZHANG J Z, MIAO L C, WANG H J. Methods for characterizing variability of soil parameters[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(12):1936-1940. (in Chinese)
    [3] 刘松玉, 蔡正银. 土工测试技术发展综述[J]. 土木工程学报, 2012, 45(3):151-165. LIU S Y, CAI Z Y. Review of the geotechnical testing[J]. China Civil Engineering Journal, 2012, 45(3):151-165. (in Chinese)
    [4] 刘松玉, 吴燕开. 论我国静力触探技术(CPT)现状与发展[J]. 岩土工程学报, 2004, 26(4):553-556. LIU S Y, WU Y K. On the state-of-art and development of CPT in China[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4):553-556. (in Chinese)
    [5] 沈小克, 蔡正银, 蔡国军. 原位测试技术与工程勘察应用[J]. 土木工程学报, 2016, 49(2):98-120. SHEN X K, CAI Z Y, CAI G J. Applications of in situ tests in site characterization and evaluation[J]. China Civil Engineering Journal, 2016, 49(2):98-120. (in Chinese)
    [6] 孟高头, 张德波, 刘事莲, 等. 推广孔压静力触探技术的意义[J]. 岩土工程学报, 2000, 22(3):314-318. MENG G T, ZHANG D B, LIU S L, et al. The significance of piezocone penetration test[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(3):314-318. (in Chinese)
    [7] LUNNE T, POWELL J J M, ROBERTSON P K. Cone penetration testing in geotechnical practice[M]. London, UK:Taylor & Francis:CRC Press, 2002.
    [8] 曹子君, 郑硕, 李典庆, 等. 基于静力触探的土层自动划分方法与不确定性表征[J]. 岩土工程学报, 2018, 40(2):336-345. CAO Z J, ZHENG S, LI D Q, et al. Probabilistic characterization of underground stratigraphy and its uncertainty based on cone penetration test[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2):336-345. (in Chinese)
    [9] CAO Z J, ZHENG S, LI D Q, et al. Bayesian identification of soil stratigraphy based on soil behaviour type index[J]. Canadian Geotechnical Journal, 2019, 56(4):570-586.
    [10] 刘松玉, 邹海峰, 蔡国军, 等. 基于CPTU的土分类方法在港珠澳大桥中的应用[J]. 岩土工程学报, 2017, 39(Sup2):1-4. LIU S Y, ZOU H F, CAI G J, et al. Application of CPTU-based soil classification methods in Hong Kong-Zhuhai-Macao Bridge[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(Sup2):1-4. (in Chinese)
    [11] 林军, 蔡国军, 刘松玉, 等. 基于孔压静力触探力学分层的土体边界识别方法研究[J]. 岩土力学, 2017, 38(5):1413-1423. LIN J, CAI G J, LIU S Y, et al. Identification of soil layer boundaries using mechanical layered method base on piezocone penetration test data[J]. Rock and Soil Mechanics, 2017, 38(5):1413-1423. (in Chinese)
    [12] WANG Y, FU C, HUANG K. Probabilistic assessment of liquefiable soil thickness considering spatial variability and model and parameter uncertainties[J]. Géotechnique, 2017, 67(3):228-241.
    [13] 邹海峰, 刘松玉, 蔡国军, 等. 基于电阻率CPTU的饱和砂土液化势评价研究[J]. 岩土工程学报, 2013, 35(7):1280-1288. ZOU H F, LIU S Y, CAI G J, et al. Evaluation of liquefaction potential of saturated sands based on piezocome penetration tests on resistivity[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(7):1280-1288. (in Chinese)
    [14] STUEDLEIN A W, KRAMER S L, ARDUINO P, et al. Geotechnical characterization and random field modeling of desiccated clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(11):1301-1313.
    [15] CAO Z J, WANG Y. Bayesian model comparison and selection of spatial correlation functions for soil parameters[J]. Structural Safety, 2014, 49:10-17.
    [16] 郑栋, 李典庆, 黄劲松. 基于CPTU和MASW勘察信息融合的二维土性参数剖面贝叶斯表征方法[J]. 应用基础与工程科学学报, 2021, 29(2):337-354. ZHENG D, LI D Q, HUANG J S. A Bayesian characterization approach for 2D profiles of soil properties via integrating information from CPTU and MASW in site investigation[J]. Journal of Basic Science and Engineering, 2021, 29(2):337-354. (in Chinese)
    [17] FENTON G A. Random field modeling of CPT data[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(6):486-498.
    [18] CAI Y M, LI J H, LI X Y, et al. Estimating soil resistance at unsampled locations based on limited CPT data[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(5):3637-3648.
    [19] JUANG C H, JIANG T, CHRISTOPHER R A. Three-dimensional site characterization:Neural network approach[J]. Géotechnique, 2001, 51(9):799-809.
    [20] 王长虹, 朱合华, 钱七虎. 克里金算法与多重分形理论在岩土参数随机场分析中的应用[J]. 岩土力学, 2014, 35(Sup2):386-392. WANG C H, ZHU H H, QIAN Q H. Application of Kriging methods and multi-fractal theory to estimate of geotechnical parameters spatial distribution[J]. Rock and Soil Mechanics, 2014, 35(Sup2):386-392. (in Chinese)
    [21] 刘志平, 何秀凤, 张淑辉. 多测度加权克里金法在高边坡变形稳定性分析中的应用[J]. 水利学报, 2009, 40(6):709-715. LIU Z P, HE X F, ZHANG S H. Multi-distance measures weighted Kriging method for deformation stability analysis of steep slopes[J]. Journal of Hydraulic Engineering, 2009, 40(6):709-715. (in Chinese)
    [22] WANG Y, HU Y, ZHAO T Y. Cone penetration test (CPT)-based subsurface soil classification and zonation in two-dimensional vertical cross section using Bayesian compressive sampling[J]. Canadian Geotechnical Journal, 2020, 57(7):947-958.
    [23] CANDES E J, WAKIN M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30. DOI:10.1109/MSP.2007.914731.
    [24] JI S H, XUE Y, CARIN L. Bayesian compressive sensing[J]. IEEE Transactions on Signal Processing, 2008, 56(6): 2346-2356. DOI:10.1109/TSP.2007.914345.
    [25] 赵腾远, ALADEJARE Adeyemi Emman, 王宇. 基于贝叶斯方法的模型选择以及岩石性质概率表征[J]. 武汉大学学报(工学版), 2016, 49(5): 740-744. ZHAO T Y, ALADEJARE A E, WANG Y. Bayesian model selection and characterization for rock properties[J]. Engineering Journal of Wuhan University, 2016, 49(5): 740-744. (in Chinese)
    [26] 曹子君, 赵腾远, 王宇, 等. 基于贝叶斯等效样本的土体杨氏模量的统计特征确定方法[J]. 防灾减灾工程学报, 2015, 35(5): 581-585. CAO Z J, ZHAO T Y, WANG Y, et al. Characterization of Young's modulus of soil using Bayesian equivalent samples[J]. Journal of Disaster Prevention and Mitigation Engineering, 2015, 35(5): 581-585. (in Chinese)
    [27] CANDES E J, ROMBERG J, TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509. DOI:10.1109/TIT.2005.862083
    [28] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. DOI:10.1109/TIT.2006.871582
    [29] BURNS S E, MAYNE P W. Analytical cavity expansion-critical state model for piezocone dissipation in fine-grained soils[J]. Soils and Foundations, 2002, 42(2): 131-137. DOI:10.3208/sandf.42.2_131
    [30] ZHAO T Y, HU Y, WANG Y. Statistical interpretation of spatially varying 2D geo-data from sparse measurements using Bayesian compressive sampling[J]. Engineering Geology, 2018, 246:162-175.
    [31] PETERSEN K, PEDERSEN M. The matrix cookbook[R]. Technical University Denmark, Kongens Lyngby, Denmark, 2012.
    [32] ZHAO T Y, WANG Y. Non-parametric simulation of non-stationary non-Gaussian 3D random field samples directly from sparse measurements using signal decomposition and Markov Chain Monte Carlo (MCMC) simulation[J]. Reliability Engineering & System Safety, 2020, 203:107087.
    [33] ZHAO Q B, ZHANG L Q, CICHOCKI A. Bayesian sparse tucker models for dimension reduction and tensor completion[J/OL]. Computer Science, https://arxiv.org/abs/1505.02343.
    [34] ZHAO T Y, XU L, WANG Y. Fast non-parametric simulation of 2D multi-layer cone penetration test (CPT) data without pre-stratification using Markov Chain Monte Carlo simulation[J]. Engineering Geology, 2020, 273: 105670. DOI:10.1016/j.enggeo.2020.105670
    [35] XIAO T, LI D Q, CAO Z J, et al. CPT-based probabilistic characterization of three-dimensional spatial variability using MLE[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(5): 04018023. DOI:10.1061/(ASCE)GT.1943-5606.0001875
    [36] CHING J, HUANG W H, PHOON K K. 3D probabilistic site characterization by sparse Bayesian learning[J]. Journal of Engineering Mechanics, 2020, 146(12): 04020134. DOI:10.1061/(ASCE)EM.1943-7889.0001859
    [37] YANG Z Y, CHING J. Simulation of three-dimensional random field conditioning on incomplete site data[J]. Engineering Geology, 2021, 281: 105987. DOI:10.1016/j.enggeo.2020.105987
    [38] MATHWORKS I. MATLAB: The language of technical computing[EB/OL]. [2021-05-21]. http://www.mathworks.com/products/matlab/.
    [39] DIETRICH C R, NEWSAM G N. A fast and exact method for multidimensional Gaussian stochastic simulations[J]. Water Resources Research, 1993, 29(8): 2861-2869. DOI:10.1029/93WR01070
    [40] PHOON K K, KULHAWY F H. Characterization of geotechnical variability[J]. Canadian Geotechnical Journal, 1999, 36(4): 612-624. DOI:10.1139/t99-038
    Related
    Cited by
Get Citation

朱文清,赵腾远,宋超,王宇,许领.基于吉布斯采样与压缩感知的二维非平稳CPT数据快速插值方法[J].土木与环境工程学报(中英文),2022,44(5):98~108

Copy
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 02,2021
  • Online: June 28,2022
Article QR Code