Abstract:In order to systematically evaluate the seismic collapse resistance of RC frame structures in China, 66 typical RC frame structures were designed in accordance with the current codes. Based on OpenSEES platform, the lumped plastic hinge model of typical RC frame structures considering shear deformation of joints was established. IDA curves and collapse points of typical structures were obtained by IDA analysis method. Furthermore, effects of building seismic fortification levels, storeys and span on the collapse margin ratio (CMR) were analyzed, and the seismic collapse resistance of the RC frame structure under major earthquakes and severe earthquakes was evaluated. The results show that, the CMR of the RC frame structure designed according to China's current codes has a negative correlation with the seismic fortification levels and stories, but has a weak correlation with the span; the RC frame structure designed in accordance with the current code can meet the fortification requirements of major earthquake, but its ability to withstand the effects of severe earthquakes is obviously insufficient. Among them, the 7.5 degree fortified RC frame structure has the weakest ability to resist collapse.