Study on Vertical Uplift Resistance of the Foundation of Plate and Ball Connected by Anchor Cable
DOI:
Author:
Affiliation:

1.School of Civil Engineering and Architecture, China Three Gorges University;2.School of Civil and Transportation Engineering, Henan University of Urban Construction

Clc Number:

TU735

Fund Project:

Scientific and Technological Research Projects in Henan Province

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In the light of the engineering characteristics of sandy soil foundation in desert area and the shortcomings of existing transmission tower foundation, a foundation of plate and ball connected by anchor cable is developed. This foundation not only fills the gap of transmission tower foundation in desert area, overcomes the construction difficulties of sandy soil foundation, but also meets the requirements of safety and stability of the project. By means of the combination of the similar model uplift test and numerical simulation, the displacement of foundation under different uplift loads is analyzed. And, the effects and the law of influence of buried depth ratio, spherical diameter and column diameter on the ultimate uplift bearing capacity coefficient of foundation and the radius of main rupture surface of soil surface are studied. The results show that the numerical simulation results are in good agreement with the model test results, and the load-displacement curve presents a three-stage change, which corresponds to the three stages of soil deformation evolution. The ratio of buried depth has the greatest influence on the ultimate uplift resistance of foundation, and there is a positive correlation between them. The ultimate uplift bearing capacity coefficient increases first and then decreases with the increase of burial depth ratio, and is negatively correlated with sphere diameter and positively correlated with cement-soil column diameter. The radius of main rupture surface of soil is negatively correlated with the buried depth ratio, spherical diameter and column diameter.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 28,2018
  • Revised:March 16,2019
  • Adopted:April 28,2019
  • Online:
  • Published:
Article QR Code