Experimental Study of electro-osmotic interface resistance based on Electrochemical Reaction
DOI:
Author:
Affiliation:

1.China Railway Construction Group Southern Engineering Co,Ltd;2.Coastal and urban Geotechnical Engineering Research Center,Zhejiang University

Clc Number:

TU472.5

Fund Project:

National Natural Science Foundation of China (No. 52078455,51708507)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In order to the issue of high energy consumption and significant potential loss at the soil-electrode interface during electroosmotic consolidation, this study investigates the impact of electrode reactions on interface resistance from an electrochemical perspective. By using a self-designed one-dimensional electro-osmotic consolidation device, indoor experimental studies were conducted to explore the trend of the clay-electrode interface resistance under different electrode materials and different power supply modes, and the mechanism was elucidated using an electrochemical interface resistance model. The experimental results show that electrode reactions alter the interface electrochemical properties, affecting interface resistance and thus the electroosmotic drainage rate. The anode interface resistance is significantly affected by electrode reactions, with a smaller anode interface resistance observed in the EKG electrode under long-term electrification, while the metal electrode exhibits a larger anode interface resistance due to the combined effects of concentration polarization and surface membrane resistance. Using an optimized power supply strategy can help alleviate interface polarization and inhibit interface resistance growth.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 17,2023
  • Revised:April 28,2023
  • Adopted:June 29,2023
  • Online:
  • Published:
Article QR Code