Removal of diclofenac in solution by the E-Mn2+-PMS process via non-radical pathways
DOI:
Author:
Affiliation:

1.College of Environment and Ecology,Chongqing University;2.Department of Gastroenterology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University

Clc Number:

X703.1

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    With the improvement of water quality standards and detection technology, the control of new pollutants has gradually become a research hotspot. The activation ability of divalent manganese to peroxymonosulfate (PMS) was improved by introducing an electric field, and the E-Mn2+-PMS synergistic process was constructed to remove the refractory organic pollutant diclofenac (DCF) in water. Firstly, the effects of current density, PMS concentration, Mn2+ concentration, solution pH value and water matrix (NO3-、Cl-、HA) on the removal of DCF in water were discussed, respectively. The results indicated that the synergy indices of the E-Mn2+-PMS process was 10.88 within 20 min of reaction, and its reaction rate constant was 19.250×10-2 min-1. The mineralization rate of DCF was 67.4% in 180 min, under the experimental conditions: current density was 11.42 mA cm-2, PMS concentration was 1 mM and Mn2+ concentration was 150 μM. Acidic conditions facilitated the removal of DCF, and the optimal pH value was 3. NO3- had almost no effect on the removal of DCF, and Cl- and HA promoted the removal of DCF significantly. Subsequently, it was demonstrated by radical scavenger experiment, electron paramagnetic resonance (EPR) tests, and analysis of manganese intermediate valence substances. The non-radical pathways (Mn(III) oxidation and 1O2 oxidation) dominated in the E-Mn2+-PMS process. Compared with Mn2+-PMS process, the amorphous MnO2 generated in situ under electric field conditions could quickly activate PMS to produce 1O2, achieving efficient removal of pollutants.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 31,2024
  • Revised:April 24,2024
  • Adopted:May 13,2024
  • Online:
  • Published:
Article QR Code