State-of-the-art review of dangerous rocks stability under the influence of water level fluctuations in the Three Gorges Reservoir area
DOI:
Author:
Affiliation:

Hydrogeology & Engineering Team 208, Chongqing Bureau of Geology and Mineral Exploration (Chongqing Reconnaissance and Design Academy of Geological Disasters Prevention and Treatment Engineering)

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The dangerous rock in the Three Gorges reservoir area possesses characteristics of concealment, sudden occurrence, strong destructive power, and significant harm. The deterioration of rock mass caused by periodic fluctuation of reservoir water level has become a critical threat to the long-term stability of these hazardous rocks. In recent years, numerous scholars have conducted extensive research on the damage and disaster mechanisms of rock mass under the influence of water level fluctuation, as well as on instability models of dangerous rocks and stability calculation methods. Comprehensive analysis and research have led to the conclusion that advancements in test methods, testing techniques, and equipment for assessing rock mass damage caused by water-rock action have deepened our understanding of disaster mechanisms related to rock mass deterioration and instability modes of dangerous rocks influenced by changes in water levels. Furthermore, it has resulted in more scientifically sound calculation methods for evaluating dangerous rock stability. However, there are still six areas worthy of further study: disaster mechanisms and failure characteristics related to water-related hazardous rocks; laboratory simulation experiments under complex dynamic mechanical environments; in-situ tests; large-scale structural plane detection; regularity and spatial expression of rock mass damage; studies on instability models for dangerous rocks under complex dynamic conditions; cumulative damage assessment and long-term stability studies; instability failure modes associated with water-related hazardous rocks; as well as application of Remote Sensing Technology and Machine Learning Model Methods.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 08,2024
  • Revised:August 30,2024
  • Adopted:September 11,2024
  • Online:
  • Published:
Article QR Code