甲酸处理的纳米铜无压烧结性能及高温老化研究
作者:
作者单位:

1.重庆大学,输配电装备及系统安全与新技术国家重点实验室,重庆 400044;2.重庆大学,光电技术及系统教育部重点实验室,重庆 400044

作者简介:

徐瑜(1997—),男,硕士研究生,主要从事功率模块的先进封装工艺及应用研究,(E-mail)1515801056@qq.com。

通讯作者:

陈显平,男,教授,博士生导师,(E-mail)xianpingchen@cqu.edu.cn。

中图分类号:

TM223

基金项目:

国家自然科学基金资助项目(61404140404);国防科技技术预先研究基金资助项目(Z20210023);重庆市教委科研基金资助项目(Z20190213)。


Pressureless sintering performance and high temperature aging of formic acid-treated nano-copper
Author:
Affiliation:

1.State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, P. R. China;2.Key Laboratory of Optoelectronic Technology & Systems Under the Ministry of Education, Chongqing University, Chongqing 400044, P. R. China

Fund Project:

Supported by National Natural Science Foundation of China (61404140404), Defense Advance Research Program of Science and Technology (Z20210023), and Scientific Research Fund of Chongqing Municipal Education Commission (Z20190213).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    介绍了一种基于甲酸铜高温分解反应的纳米铜无压烧结工艺,旨在解决现有铜烧结技术中铜易氧化且需要辅助压力的问题。通过甲酸溶液对纳米铜颗粒(Cu NPs)进行预处理,生成致密的甲酸铜膜,经烧结后最终形成Cu-Cu接头。接头烧结质量试验表明,甲酸反应时间10 min、聚乙二醇(PEG)溶剂、0.048 mm砂纸打磨基材表面以及5 ℃/min的升温速率为最优烧结条件。在该条件下,实现了纳米铜无压烧结,制备的接头剪切强度可达16.18 MPa,电阻率低至570 μΩ/m。经过200 h高温老化实验,接头的剪切强度仍可达到9.38 MPa,验证了该烧结工艺的可靠性。文中所提出的工艺为实现第三代半导体芯片的可靠互联提供了新思路。

    Abstract:

    A pressureless sintering process of copper nanoparticle based on the copper formate pyrolysis reaction was developed. The aim was to address challenges faced by the existing copper sintering technologies, such as copper oxidation and the need for additional pressure. Copper nanoparticles (Cu NPs) were treated with formic acid solution to generate dense copper formate films, which, upon sintering, formed Cu-Cu joints. Quality tests confirmed that a formic acid reaction time of 10 min, PEG solvent, substrate surface polishing with 0.048 mm sandpaper, and a heating rate of 5 ℃/min were the optimal sintering conditions. This approach achieved pressureless sintering of copper nanoparticles, yielding joints with a shear strength of 16.18 MPa and low resistivity of 570 μΩ/m. Even after a 200 h high-temperature aging test, the joints maintained a shear strength of 9.38 MPa, which verified the reliability of the sintering process. Therefore, this method presents a novel approach for realizing reliable interconnections in third-generation semiconductor chips.

    参考文献
    [1] Park H S, Seo H K, Kim S E. Characterization of nitride passivated Cu surface for low-temperature Cu-Cu bonding[C]//2019 International 3D Systems Integration Conference (3DIC), October 8-10, 2019, Sendai, Japan. IEEE, 2020: 1-4.
    [2] 万建坤, 杨文华, 黄鑫. 甲酸预处理对基于Cu/Ag混合纳米颗粒的Cu-Cu键合的影响[J]. 电子元件与材料, 2022, 41(6): 655-660.Wan J K, Yang W H, Huang X. Effect of formic acid pretreatment on Cu-Cu bonding based on mixed Cu/Ag nanoparticles[J]. Electronic Components and Materials, 2022, 41(6): 655-660.(in Chinese)
    [3] 史铁林, 李俊杰, 朱朋莉, 等. 基于纳米铜烧结互连键合技术的研究进展[J]. 集成技术, 2021, 10(1): 3-13.Shi T L, Li J J, Zhu P L, et al. Research progress of interconnection and bonding technology based on nano-copper sintering[J]. Journal of Integration Technology, 2021, 10(1): 3-13.(in Chinese)
    [4] Liang Q, Li J J, Li T X, et al. A novel pattern printing method of applying Ag nanoparticles to Cu pads for high density Cu-Cu interconnection[C]//2019 20th International Conference on Electronic Packaging Technology(ICEPT). August 12-15, 2019, Hong Kong, China. IEEE, 2020: 1-3.
    [5] Tan C S, Peng L, Fan J, et al. Three-dimensional wafer stacking using Cu-Cu bonding for simultaneous formation of electrical, mechanical, and hermetic bonds[J]. IEEE Transactions on Device and Materials Reliability, 2012, 12(2): 194-200.
    [6] 李俊杰. 面向低温Cu-Cu键合的Cu基纳米焊料研究[D]. 武汉: 华中科技大学, 2019.Li J J. Research on Cu based nanosolders for low temperature Cu-Cu bonding[D]. Wuhan: Huazhong University of Science and Technology, 2019. (in Chinese)
    [7] Park H, Kim S E. Two-step plasma treatment on copper surface for low-temperature Cu thermo-compression bonding[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020, 10(2): 332-338.
    [8] Okoro C, Limaye P, Agarwal R, et al. Novel Cu-Cu bonding technique: the insertion bonding approach[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2011, 1(12): 1885-1894.
    [9] 杨婉春, 王帅, 祝温泊, 等. 低温烧结纳米铜焊膏的制备及其连接性能分析[J]. 焊接学报, 2018, 39(6): 72-76, 132.Yang W C, Wang S, Zhu W B, et al. Preparation and connection performance analysis of solder paste by low-temperature sintering Cu nanoparticles[J]. Transactions of the China Welding Institution, 2018, 39(6): 72-76, 132.(in Chinese)
    [10] 陈显平, 钱靖. 一种低温烧结的纳米铜焊膏、其制备方法及其使用方法: CN114643435A[P]. 2022-06-21.Chen X P, Qian J. Low-temperature sintered nano-copper soldering paste, and preparation method and application method of low-temperature sintered nano-copper soldering paste: CN114643435A[P]. 2022-06-21. (in Chinese).
    [11] Park H, Seo H, Kim Y, et al. Low-temperature (260 ℃) solderless Cu-Cu bonding for fine-pitch 3-D packaging and heterogeneous integration[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11(4): 565-572.
    [12] Li J J, Yu X, Shi T L, et al. Depressing of Cu-Cu bonding temperature by composting Cu nanoparticle paste with Ag nanoparticles[J]. Journal of Alloys and Compounds, 2017, 709: 700-707.
    [13] Hou J C, Li C X, Huang S J, et al. Bonding strength of Cu-to-Cu joints using Cu cold spray deposition by an oxidation and reduction process for power device package[C]//2019 International Conference on Electronics Packaging (ICEP), April 17-20, 2019, Niigata, Japan. IEEE, 2019: 432-436.
    [14] 张银侠. 复合微纳铜颗粒膏的制备及其烧结性能的研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.Zhang Y X. Research on preparation and sintering performance of mixed copper nano/microparticles paste[D]. Harbin: Harbin Institute of Technology, 2018. (in Chinese)
    [15] Kobayashi Y, Shirochi T, Yasuda Y, et al. Metal-metal bonding process using metallic copper nanoparticles prepared in aqueous solution[J]. International Journal of Adhesion and Adhesives, 2012, 33: 50-55.
    [16] Yamakawa T, Takemoto T, Shimoda M, et al. Influence of joining conditions on bonding strength of joints: efficacy of low-temperature bonding using Cu nanoparticle paste[J]. Journal of Electronic Materials, 2013, 42(6): 1260-1267.
    [17] Tian Y H, Jiang Z, Wang C X, et al. Sintering mechanism of the the Cu-Ag core-shell nanoparticle paste at low temperature in ambient air[J]. RSC Advances, 2016, 6(94): 91783-91790.
    [18] Bi?er M, ?i?man ?. Controlled synthesis of copper nano/microstructures using ascorbic acid in aqueous CTAB solution[J]. Powder Technology, 2010, 198(2): 279-284.
    [19] Liu J D, Chen H T, Ji H J, et al. Highly conductive Cu-Cu joint formation by low-temperature sintering of formic acid-treated Cu nanoparticles[J]. ACS Applied Materials & Interfaces, 2016, 8(48): 33289-33298.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

徐瑜,戴东方,杨仁彬,陈显平,王平.甲酸处理的纳米铜无压烧结性能及高温老化研究[J].重庆大学学报,2023,46(11):42-48.

复制
分享
文章指标
  • 点击次数:431
  • 下载次数: 859
  • HTML阅读次数: 130
  • 引用次数: 0
历史
  • 收稿日期:2022-10-13
  • 在线发布日期: 2023-11-28
文章二维码