Jan. 1990

NKEKKKKK A **的** B B **B** REKKKKKK

碱软硬度算式的简化计算

SIMPIFIED EQUATION FOR CALCULATIONS OF SOFTNESS

CHARACTERS OF BASES

王远亮

Wang Yuanliang (应用化学系)

自从 Pearson^[1] 于1963年提出酸碱软硬度的概念以来, 软硬酸碱原理在化学现象中的定性解释因极为简便而得到广泛运用,涉及到与化学相关的所有领域。然而,软硬酸碱的概念仅建立在实验数据的归纳总结的基础之上,未上升到理论 高 度 。 即便国内外均做了不少工作,但在酸碱软硬度这个键参数的定量方面仍未统一。

Klopman^[2]在研究溶液中的化学反应时,从量子化学前沿分子轨道微扰能的计算,由此出理论发曾定义并计算了有限的酸減软硬度、其定义如下。

$$E_{n}^{\frac{1}{1}} = IP_{n} - b^{2}(IP_{n} - EA_{n}) - \frac{x_{s}(C_{s}^{n})^{2}}{R_{s}} \left(1 - \frac{1}{\epsilon}\right).$$

$$(q_{s} - 2b^{2}x_{s}(C_{s}^{n})^{2}) \qquad (1)$$

和

$$E_{m}^{\stackrel{\leftarrow}{=}} = IP_{m} - a^{2}(IP_{m} - EA_{m}) - \frac{x_{r}(C_{r}^{m})^{2}}{R_{r}} \left(1 - \frac{1}{\epsilon}\right).$$

$$(q_{r} + 2b^{2}x_{r}(C_{r}^{m})^{2}) \qquad (2)$$

式中 $E_{*}^{\stackrel{\sim}{=}}(B_{*}^{\stackrel{\sim}{=}})$ 定义为酸(碱)的软硬度,IP为电离能,EA为电子亲合能。 $C_{*}^{\stackrel{\sim}{=}}$

 (C_r^n) 为酸(碱)原子的前沿轨道系数, $R_s(R_r)$ 定义为酸(碱)系统的离子半径,

 $x_*(x_*)$ 为酸(碱)原子总电荷数的函数,等于 $q-(q-1)\sqrt{0.75}; q_*(q_*)$ 为酸碱原子的总电荷,a和b为变分参数, $a^2+b^2=1$

这就首次为软硬酸碱原理奠定了理论基础。但是, K氏的 E_n^{\div} 和 E_n^{\div} 的计算由上两式可见,许多参数难以获得,因而简化 K 氏关于 E_n^{\div} 和 E_n^{\div} 算式就具有理论意义和实践意义。作者 $[^{5}]$ 曾简化了式(1),大大地扩充了 E_n^{\div} 键参数 标度值 的范围 , 并提出了硬软酸的分类标准。本文试图简化式(2)。

按照式(2), Klopman 计算了 9 种碱的 $E_n^{\frac{1}{2}}$ 值,列于表 1 第 7 列,从式(2)分析,可以假定最后一项(去溶剂化能)为 C/r_{ion} (C为带有量纲 的常数, r_{ion} 为碱离子的离子半径),如果取 $a^2=3/4$ (因为 $a^2+b^2=1$, $a^2=1-b^2$, 当 $b^2=1/4^{13}$ 时, $a^2=3/4$),则式(2)可简化为,

			12, 1 119	147 47 12 26 2	2 34.		
14 1 Table	IP .	E_A	轨 道 能	rion	去溶剂化	$E_{\mathbf{n}}^{\star}(eV)$	
授 体	(eV)	(eV)	(eV)	(Å)	能(eV)	原文	本 次
F-	17.42	3,48	6.96	1.36	5,22	-12.18	-12,18
$H_{2}O$	25.4	12.6	15.8	(1,40)	(-5.07)	-(10.73)	-10.73
OH^{-}	13.10	4.8	5.38	1.40	5.07	10.45	-10.45
C_i	13,01	3,69	6.02	1.81	3.92	-9.94	-9.94
Br-	11.84	3.49	5,58	1,95	3.64	-9,22	-9.22
CN^-	14.6	3, 2	6.05	2,60	2,73	-8.78	-8.78
SH-	11,1	2,6	4.73	1.84	3.86	-8.59	-8. 59
<i>I</i> -	10.45	3,21	5,02	2.16	3.29	-8 ,31	-8.31
H^{-}	13.6	0.75	3.96	2.08	3.41	- 7 37	-7.37

表 1 碱的软硬度参数

$$E_m^{\stackrel{r}{=}} = \frac{1}{4} (IP_m + 3 E A_m) - C/r_{ion}$$

又令 $C=7.098(eV \cdot A)$

$$E_{m}^{+} = \frac{1}{4} (IP_{m} + 3EA_{m}) - 7.098/\tau_{ion}$$
 (3)

根据式(3)取表1中的数据以OHT为例计算如下:

$$\frac{1}{4}(IP_m + 3EA_m) = \frac{1}{4}(13.10 + 3 \times 2.8) = 5.38(eV)$$

 $7.098/r_{\text{fun}} = 7.098/1.40 = 5.07(\text{eV})$

故考虑到碱为授体,以"-"号表示之,即

$$E_{\pi}^{\stackrel{+}{=}} = -(5.38 + 5.07) = -10.45$$
 (eV)

依式(3)的计算值列于表1第8列。

从表 1 第 7 列和第 8 列的数值比较可以看出,两值完全吻合。这表明简化式(3)用于

3866

^{*} 原表为9.86, 应为3.86

奪

碱的硬软度的计算是合适的。

从《元素性质数据手册》(李振寰编)中取得 IP_m 和 r_m 值,从《 SI 化学数据》(周怀宁译)和《高等无机化学》(北京师范大学等译)查及 EA_m 值,按照式(3)计算的 E_m ^{*} 值列于表 2 。为求数据来源的统一,表 1 中计算过的 9 种离子同时列入表 2 。

表 2 若干碱的软硬度*

職	IP _m (eV)	E_{A_m}	$\frac{1/4(IP_{m}+3EA_{m})}{(eV)}$	r_{ion} (A)	7.98/r _{fom} (eV)	$E_{ eq n}$ (eV)
F-	17.42	3.45	6.94	1.36	5.22	-12,16
$H_{3}O$	(25.4)	(12.6)	(15.8)	(1.40)	(-5.07)	-10.73
0 H -	(13.10)	(2.8)	5.38	1.40	5.07	-10.45
C_i	12.97	3.61	5,95	1.81	3.92	-9.87
Br^-	11.84	3.36	5.67	1,95	3,64	-9.31
O1-	11.62	1,47	4.01	1,40	5.07	-9.08
CN-	(14.6)	(3, 2)	6.05	(2.60)	2.73	-8.78
S=-	10.36	3.07	4.89	1,84	3.86	-8.75
SH-	(11, 1)	(2.6)	4.73	1.84	3.86	-8.59
<i>I</i> -	10.45	3.06	4.91	2.16	3.29	-8;0
S-	10.36	3.07	4.89	2.19	3.24	-8.13
0-	11,62	1,47	4.01	1.76	4.03	-8.04
Se2-	9.75	2.17	4.07	1.98	3,58	-7.64
Na-	14.53	-0.32	\$.39	1.71	4, 15	-7.54
<i>H</i> ⁻	13.60	0.81	4.00	2.08	3.41	-7,41
T*e2-	9,01	2.28	3.96	2.21	3,21	~7,17
Se-	9.75	2.17	4.07	2.32	3.06	-7.13
T^{e^-}	10.8	2.28	3.96	2.50	2.84	-6.80
Pos-	8.42	2.03	3.63	2.30	3.09	-6.72
Pb4-	7.42	1.86	3.25	2,15	3.30	-6.55
C^{4-}	11.26	1.25	3,75	2.60	2.73	-6.48
$P^{\mathfrak s-}$	10.49	0.62	3.09	2.12	3,35	-6.44
A 55-	9.81	0.81	3.06	2.22	3 20	-6,26
514-	8.15	1.40	3.09	2,71	2,62	-5,71
Si^-	8,15	1,40	3 09	3.84	2,59	-5.68
Ge4-	7.90	1.43	3.05	2,72	2.61	-5.6
S68-	8.64	0.67	2,66	2.45	2,90	-5.50
Be^-	9.32	-0.68	1.82	1,95	3,64	-5.4
S,4-	7.34	1.53	2.98	2,94	2.41	-5.3
B_1 3	7.29	-0.28	1,61	2,13	3.33	-4.9
S_n^-	7.34	1.53	2,98	3.70	1,92	-4.9

插号据取自表1, 中的数

ĺ

i

参考文献

- [1] Pearson, R.G., J.Am. Chem. Soc., 1963, 85, 3533-9
- [2] Klopman, G., J.Am. Chem. Soc., 1968, 90, 223-34
- [3] 王远亮, (酸的硬度与羟配络合物一级稳定常数的关系), 成都科技大学学报, 1988, (4): 65-74

• 简 讯•

四川省高等学校学报研究会成立

经省教委批准,在合并现有文科学报和自然科学学报两个研究会的基础上,于1989年12月6~8日在成都电子科技大学召开了四川省高校学报研究会成立大会。有70多家学报或高校学术期刊的80多位代表出席了会议。副省长韩邦彦、省教委主任卢铁城、省新闻出版局局长单基夫,全国知名学者刘盛羽、刘诗白教授和四川大学、电子科技大学、四川师范大学等校领导同志到会祝贺并作了重要讲话。我校副校长、百南高校学报研究会理事长雷闻教授向大会发了祝贺信。

韓副省长在讲话中要求学报在办好高校的过程中发挥更多的作用。他说,高等学校不仅要出人才出成果,而且要出读略出思路;不仅要搞好教学、科研,而且要搞好思想教育和管理工作。学报是重要的学术思想阵地,要影响和推动学校的各项工作。单基夫局长说、高校学报的特点是:发展快、路子正、成绩大。他表示省新闻出版局要尽可能创造条件,帮助高校进一步办好学报、期刊,不断提高编辑水平和刊物质量。卢铁城主任阐述了学报研究会成立的意义,全面评价了学报、期刊已经发挥的作用。他殷切期望到会同志要认真学习党的十三届四中、五中全会的精神、振奋精神、增强信心,总结经验,全面提高刊物质量,为发展科学技术文化,培养高级专门人才、促进学术交流、为两个文明建设发挥更重要的作用。他希望要努力把研究会办成"编辑之家"。

大会选举产生了第一届理事会,讨论并通过了研究会章程。推举省教委副主任符宗**胤**副教授、西南财大校长刘诗白教授、重庆大学副校长雷闻字教授、四川大学副校长刘应明教授为名誉会长,推选田祖武为理事长,林永明、钟学恒、季平、苟宗泽、朱文显为副理事长、徐安玉为秘书长,在第一届理事会上对1990年研究会的活动,作了统一安排。

(一兵)

