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ABSTRACT let 7y (s) denote the 3-independence number of s-cube Q.. An algorithm is
presented for finding a 3-independent set of Q,,and 2>l =1 7, (R)<{[2*/ (s -+ 1)] iz shown.
These results are applied to the design of neural associative memories.
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A 3-independent set of a graph is a set of vertices such that the length of a shortest path
between any two-of them is at least 3. A maximum 3-independent set § of a graph is a 3-
independent set such that every 3-independent set of the graph has at most | S| vertices. I3 (&)
denotes the cardinality of a maximum 3-independent set of a graph G, called the 3-independence
number of &,

a—cube,{,,is a graph whase vertices can be labeled with all 0-1 sequences of length s so that
two wvertices are adjacent iff their labels have a Hamming distance 1 (the Hamming distance between
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two 0-1 sequences @ and £ is the number of bits on which a differs from §,denoted by dz(a, 8)).
For brevity, the vertices of @, ate identified with their labels. Thus,a szt of vertices of Q, is a 3-
independent set iff any two of them have a Hamming distance at least 3. I3 (@) is abbreviated as I
(=),

It is NP-hard to tind 7y (@) for an arbitrary greph G'¥. In this paper, and algorithm is
presented for finding a 3-independent set of Q,,and 2*~D%21l-t< 1 (r) <[ 2*/(n1)] is shown
{[z] denotes the largest integer no larger than z). These results ave applied to the design of neurai

associative memories.

1 BOUNDS ON I;(n)

Let F,{0)=1{0000,1111),F:(0)=140011,1100},F:(0)>={0101,1010},7,({0)={0110,

1001},
Fi(1>={0001,1110},F:(1>={0010,1101},F:(1>={0100,1011},F,(1>y={0111,
1000} 5
T{1>={000,111},7(2)=4{001,110},7(3)={010,101},7(4)>=={011,100}.
Lemma 1. Let 0<li<C1 and 1< j5£ k<4, Then the following assertions hold. .

(1) It J;(i)=1{a,p} ,then dg(a, f)=A.

(2) It T(5)=(a,B)} then dg(a, A =13.

(3) It g€ F;(5) , BE Fu (i) sthen dgla, f)=2.

{(4) It a7 ), FET (k) then dgla,. fr=1.

Let [a];; be the (-1 sequence consisting of bit ¢ through bit j of a 0-1 sequence a. [a ), is
abbreviated as [a ),. Let B denote the set of all {1 sequences of length n. We canstruct a set & (y)
of 0-1 sequences of length 4r+ 3 from a 0-1 sequence y of length = by collecting all a such that,

(A [a)u-p—a € [4711'?1([}’];) for 1<i<n.
=

(B) It [alcnen—nE F([¥]) (1<i<In) ,then [ﬂ]w+n—cu+saET((£i) mod 4413,

Lemma 2. Let & B Then |H(y)|=2%+1,

Proof. |H(p)| =2X£ I_jérlf";([?]a} | =8 x 2==2%11, Q. E.D.

Theorem 3.  Lei y& B*. then H{y) is a I-indepeadent sel of Qinps.

Proof. Let a and § be two distinct elements of H(p) ,and assume for 1<li<z, [a|_p-uE
Fy (%), [A)c—31- 0 € Fu (2. Further discussions are divided into three cases:

Case 1. jo=k (1<<i<Ca). Then ( £ j,) mod 4=( Lk} mod. Since a=%#,Then either ;
=1

=]
(A) there is 1<Cp<n such that [odupn—u7 08 -9 —4p 0T
(B) [adutu-detn Z 8 Jorrn—tern-
By lemma 1,either (A} ot (B) would imply £&([a]i,—35—4rs [F ] ciy—s3—4p )= 4. Thus,de(a, £) 23
Case 2. jy=h(1<<i<<a), 155 psbut j, 74, By lemma 2,da ((8]up—1,—trs [ Blurs—ip) = 2.
Without loss of generality,let us assume j,>>k,,then
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0< Th—~ Th=j,— b <d
implying € Z'3.) modd7( Z &) modd.
By lemma 2,dr{[a]cp+—tut+3r+ LB cap+ 11—+ Y=>1. Thus,dga, §) >3.
Case 3. There exist 1< p7 9<% such that j, 7k, and j,7k,.
By lemma2,dp{[a]cp—n-ws{ flee~n—4-)=2 for 7€ {p, g} Thus,dr{a, f)=4.
Combining case 1-case 3,this proposition is proved. Q. E.D.
Now we propose & recursive procedure for finding 8 3-independent set of ¢, below
Procedute 3-INDSET
Input. a positive inleger ».
QOutput; a 3-independent set of @,.
begin  if =1 then return ({0}); else if =2 then return ({001}); else if n=23
then return ({000,111}); else
begin S« 3-INDSET ([#/4]); ifa—4X[a/4]=23 then return (‘ggﬂ(a)); else

if "—4 X [a/4]=2 then return {{{§:086C IéTH(a)}); else if s— 4X [a/4]
=1 then rewrn ({{f.008€ [EIH(a)}); else return ({f.0005€ [éH(a)})

end
end

Theorem 4. 3-INDSET when run on % returns a 3-independent set of @,.

Proof. By induction on s.

Basis step. This proposition is obvious for 15 s<_3.

Inductive slep. Assume this proposition is true for s<Cp(Z>4). Now consider s = p. It results
from the induction hypothesis that dg{a, ) >3 for any distinct a,BE€ 3-INDSET([ 5/4]). Without
lass of generality,let us assume [a ;7= [ £], for i€ {a,b.c) ,then for any € H{a) , 6 H(S),

[¥]ctima—u 7= (8 Juin—u for 1 € {a,b,c)

Fromtheorem 3, H (a) is a 3-independent set of Qu/a3+1 for every a& 3-INDSET ([ 2/4]).

Hence, 3-INDSET (p) is & 3-independent sec¢ of @Q,,implying chis propasition is true for #=3p, too.

By the induction principle ,this proposition is true for every positive integer. Q. E. D
Tet € {x) denote the cardinality of the 3-independent set of Q, obtained by procedure 3-
INDSET.

Theorem 5 ¢ ()= 2",
Proof. Lemma 2 resulis in the following recutsive equations about C(x),
C(l)=0C(2)=1,0(3) =2 (n

C(n) = 23[-1-1+-m+20([%]) for s > 3 2

Without loss of generality ,let us assume 4*<a<74**1. By recursively applying equation{2) and
notheing that [[a/4]/4]=[r/4%] for every pcsitive integer =, we immediately obtain

Cen) = 28 EL51+ 3, ( Cinen) o[ 5D (3)
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Let [ceei_y++0y]4 be the representation of a in radix 4 (Notice that c,221). Then
A g—i L
C(r) = 23‘3”1_3!011 ‘+.‘-En"_nc[([:“%:])- . )
f
Let S;= ECJ-‘lJ_i- Then for lglgk—l.S‘—S.-+1=c.- (5)
d==1]
By adding all equations in (5) together and making some elementary transforms,we obtain
» =1
38+ Zoy =438, - 8 + ¢ (6>
=] ]
Notice thar 8y=cy,451=5—0p,(8) can be turned into

H =1 A
38+ Fe,=1r— [-a;] ¢h)
=] i=0
From (4) and (7). we obtain C(n)=23—[ﬁ3—30([:%:]) (8)

Case 1. [;]=1.Then 2k=[logs]. By (1) and (8),C(x)=2—liwpi—-
Case 2. [%]=2. Then 2k=[log:x ]— 1. By (1) and (8),C(n) = 2~ [oes1—1,

Case 3. [?";]=3. Then 2k=[log,n ]— 1. By (1) and (8),€(n) =2+—[eml-1,
Combining case 1-case 3,we obtain ' (s) = 2*—{kezl—1, Q.E.D.
Theorem & f3(a) >=C(a) = 2*"Toes]—1,
Proof. From theorem 5 and the fact that 73 (a) =T (n). ¢. E. D.
Theorem 7 I3(r)<[2*/(x41)].
Proof. Let S be &2 3-independent set of ¢,. For any two elements a, § of §,
{reda(y,a) = 1} [} {y:da(y,8) = 1} = @
implying |8| 4+ Feesl{r:da(y a)=1}|<<2 :
Hence, | §|<<[2*/(a+1) ],implying the proposition. Q. E.D.
By theorems 6-7,we obtain
Theorem 8 If a=2"—1(k>=2) ,then f3(n) = 2" Dogi—1,

2 Application of Neural Associtive Memories

In a digital computer a desired set of information called 2 memory is recalled when the correct
address of the memoty is given. In contrast to this, associative memory (AM) is. afull set of the
information of a memory is recalled by a portion of the memory’ s information. Some recurrent
neural networks are candidates for AM because their dynamical behavior exhibits asymptotically
stable equilibriz. This time evolution of such a neural network toward one of its equilibria can be
interpreted as the evolution of an imperfect pattern twoard the correct (stored) pattem f4~51
Whenimplementing AM by a recurrent netural network ,the key problem is how o store each desired
pattem as an asymptotically stable equilibrium of the network and how to control the extent of the
basin of artraction of each stored patter. Therefore yone should chogse a set of vertors whose pairwise
Hamming distance is no less than 3 as the set of patterns to be stored in a neural network ,and such

a set can be cbtained by executing the algorithm presented in the preceding section.
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An s-order Hopfield ru;‘.twml:[".5 is a network composed of s processing elements (neurons) in
which (1) w, is the weight from neuron j to neuron &, W (1), 1. is symmetric and zero-diagonal;8,
is the threshold of neuron &, 8= (8 ,8;,.8,)7;

(2) z,(t) is the state of neuron s at time ¢, X(t)= (z;, (), 2, (L) ,---‘,z_(t))";

(3) the network is assigned an initial state X (0);at each ¢>> 0, the states of some neurons are
updated in this way .if é‘lwuz,(t)}.ﬂ, ythen z,(t+ 1) =1;otherwise x; ({+1)=—1.

A Hopfield network ca:i be described by a triple (W, 8, R) where R describes the order in which the
states of the neurons are updated. .

let (W,®,K) be a Hopfield network , X" = (z" ,2/ , <= ,2," )T be a vector. If for 1<li<{n, 2
=sgn( é‘lw,-,-z,-' —@&,) , where sgn(z) equals-1 or according as z is negative or nonnegative,then X" is
celled a‘.'n equilibrium of the network. If starting from any initial state, the network will finally reach
one of its equilibria ,then the network is called globally stable.

An s-order sequential Hc:.pfield network is one such that only a single neuron is updated at each
¢ and the updating order is;z;—*zy—**—+z,—*z;—>22*~-. Such a network can be described simply by
the ordered pair (W, &). It was shownl*) that a sequential discrete Hopfield network is globally
stable ,makes them candidates for AM. If the desired vectors are asymptotically stable equilibria of
such a network,then when an incomplete (incorrect) pattern is applied, the network can find the
complete (correct) pattern

In [6~7],the problem of finding a Hopfield network (W, ®) for storing a set of binary-
valued vectors { X@ = {z[¥ ,z{, -,z 7. 1<Ck<Im} has been turned into solving the following

linear program
APy minimize [ 5 2 (wh-uf) + Z (oH+6D)]
subject to £ 2 (i) + £ @1+ 1> tar =1,

5 )+ I @ DI for o =—1,
j(w.’J-—wFJ)—(w}.-—wi)=0,w.1.-—wE=0 for 1<i, j<Ca,
(=0, =0,600 20,8120 for 1<i, j<n,
where ¢ is a small positive numbet. wy; = wh — wf, 6, =8} — & for 1<]¢, j< n,There are efficient
algorittuns for linear programming (such as simplex algorithm as well as Karmakar aloorithm).

Example 1. Choose XV =(1,—1,1,—1—1,1,1,— )7, X@=(1,~—1,~1,1,1,1,—1,
1), X®=(~—1,-1,1,1,1,—1,1,— )7, X¥=(1,—1,1,—1,1,—1,1, —1)7 from the set
obtained by executing 3-INDSET on a= 8. Solving (LP), we obtain a Hopfield network shown in
Fig. 1.

Example 2. Choose X*¥=(1,—1,1,1,—1,—1,1,1,—1,- D7, X®=(1,—-1,1,1,1,1,
1,1,—1,—1,—-17, and X¥=(—1,—1,—1,—1,1,—1,1,—1,1)7 from the set cbtained by
executing 3-INDSET on s=10. Solving (LP),we obtain a Hopfield network shown in Fig. 2.

For investigating the capability of Hopfield network to store a set of vectors provided by the
algorithm 3-INDSET, we design a simulation experiment as follows
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fig. 1 a desired Hopfield network fig- 2. a desired Hopfield network

(1) For each (p,g) € {(6,4)(7,5),(8,6),(9,7),(10,8)}, Ten seiz of qvectors are
randomly selected from the set obtained by running 3-INDSET an p. Thus fifty sets of vectors atre
plroduoe.d.

(2) For each of the fifty sets,a Hopfield network is obtained by solving the linear program
(LP).

(3) For each of the fifty Hopfield networks, ta check whether ar not the vectors in the
corresponding set are all equilibria of the Hopfield network.
Our experiments are carried out on a 386-microcomputer. The results show that the fifty sets of
vectors are all successfully stared ina Hapfield network. Therefare the algorithm 3-INDSET can
pravide a set of vectors which can be stored with a Hopfield nefwork.

3 SUMMARY

In ttus paper, we present an algorithm for finding a 3-independent set of s-cube. Computer
simulations show that the resulting set can be effectively stored with 2 Hopfield network. Our further
tesearch will be focused an how fo store a set of vectors with a Hopfield network so that each of
them has an attraction radius of at least 1.
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