¹ 重庆大学学报 (自然科学版) Journal of Chongging University (Natural Science Edition) Vol. 20.№. 4

Jul, 1997

KF 中 F_B(Na⁺)的吸收 和辐射光谱及其热转换机理⁻

A Study of the Absorption and Emission Spectra and the Thermal Conversion Mechanism of $F_B(Na^+)$ Defect in KF

<u>乳春阳⁰ 温志淪[®]</u> 向永寿⁰ 0773 Kong Chunyang Wen Zhiyu Xiang Yongshou 0734, ① 重庆师范学院物理系,重庆,630047; ② 重庆大学光电精密仪器系;第一作者 39岁,男,讲舜)

摘要在单电子 Hartree-Fock 近似及扩展离子处理方法(SLC 方法)的基础上,提出了激发态等效偶极子模型,计算了 KF 中 Fa(Na⁺)的吸收和辐射光谱,研究了产生强 Stokes 位移辐射及激发态热转换现象的可能机制.

关键词 偶极子;热转换 / 扩展离子; Fa 心 切入下 尔天的边中 中国图书资料分类法分类号 0482.31

ABSTRACT On the basis of the single electron Hartree-Fock approximation and the SLC extended on method we presen the model of dipole of excited state, and calculate the absorption and emission spectra of $F_B(Na^+)$ in KF. The possible mechanism of the strong stockes shifted emission and the thermal conversion phenomenon of excited states have been studied.

KEYWORDS dipoles; heat transformation / extended ion; Fs centers

0 引 言

1997 年 7 月

第 20 表第 4 期

多年来,碱卤晶体中缺陷中心的发光学问题一直受到人们广泛的重视,这是由于对不同 的碱卤晶体和杂质离子,材料的发光性能会表现出很多奇特的性质,具有重要的应用价值。 KF中的F_b(Na⁺)心是一个F心(一个负离子空位束缚一个电子)和两个最近邻的杂质Na⁺ 离子构成的系统,目前为人们接受的模型如图1所示,文献[1]在实验上研究了它的吸收和 辐射光谱,结果表明,F_b(1)构形具有类F心的吸收和辐射光谱,吸收峰和辐射峰的能量分别 为 2.54 eV 和 1.72 eV.F_b(2)构形的光谱随温度的升高出现热转换现象。低温情况下光谱 (记为F_b(2)(1))的吸收和辐射能量分别为 2.54 eV 和 2.07 eV,当温度升高时,2.07 eV 辐 射峰的强度越来越小,在75~100 K 之间强度趋于零,当温度继续升高时,出现F_b(2)(1)光 诸,吸收和辐射光谱的能量分别为 2.42 eV 和 0.69 eV.且辐射峰具有很大的 Stoks 位移,其 强度随温度的上升而增加,类似的热转换现在其它碱卤晶体中也存在^[2,3]。目前人们假设这

• 收文日期 1996-12-02

种热转换现象的产生是由于存在两类不同的弛豫激发态,然而到目前为止尚没见到对其进行理论和实验研究的报道,对上述强 Stokes 位移辐射的产生及热转换现象的机制仍不清楚。

图 1 KF中F₁(Na⁺)的两种可能位形

笔者在单电子 Hartree-Fock 近似及 Song, Long, Chen 等人采用的扩展离子处理方法的基础上^[4~6],提出了激发态等效偶极子模型,考虑了由激发态 F 心电子云分布的不对称性而引起的偶极作用,计算了 KF 中 F_b(Na⁺)的吸收和辐射光谱的能量,研究了偶极作用对激发态 弛豫过程的重要影响及强 Stokes 位移辐射峰的产生,给出了 F_b(2)构形时 F_b(2)(1)和 F_b(2)(1)和 F_b(2)(1)辐射谱之间的热转换现象的可能机理,计算结果和实验值符合得很好。

1 理论计算方法

e.

在 KF 中取出以 $F_{B}(Na^{+})$ 为中心的含有 619 个离子的足够大的离子团,根据计算精度的 要求,在计算中取 $F_{B}(Na^{+})$ 周围两层离子可以移动。在单电子 Hartree-Fock 近似及扩展离子 方法的基础上,用变分法求系统总能量极小,并由全自治迭代计算同时确定 F 心电子波函数 及晶格离子位移场。总能量 *B*ror可写为:

$$E_{\rm rot} = E_{\rm con} + E_{\rm rep} + E_{\rm pol} + E_{\rm s} \tag{1}$$

总能量 Bror包括了由于 F_B(Na⁺)的存在而引起的晶格畸变及极化等所有物理效应。(1)式中 各部分能量的计算简述如下:

1.1 晶格库仑能 B...

对处于完整晶格点上的离子,马德隆势可简单地表示成马德隆常数除以离子间的最近 邻距离,对那些偏离完整晶格点上的离子,马德隆势可展为如下级数^[7]:

$$V(r) = \sum_{i=0}^{\infty} \frac{e}{d} b_i g_i(r) \left(\frac{r}{d}\right)^i$$
(2)

式中&是最近邻距离,g(r)为球谐函数,b,为展开系数,对立方晶体取前十阶就足以达到所需

的 10-3 eV 的精度。

此外,当系统处于激发态时,由于受晶格畸变的影响,F心电子云分布对原点是不对称 的。因此,我们在计算中引入如下等效偶极子模型:如系统处于 P.态,在电子云分布的两端 及相邻的两个正离子位置上分别放上电荷士q.和士q2,构成两个等效偶极子,它们在空间某 点的电势为:

$$V_{p} = q_{1} \left(\frac{1}{r_{1}} - \frac{1}{r_{2}} \right) + q_{2} \left(\frac{1}{r_{3}} - \frac{1}{r_{4}} \right)$$
(3)

式中r1~r1为等效电荷到该点的距离。如系统处于 P. 激发态,则取等效偶极子的电势为:

$$V_{s} = \mathbf{P} \cdot \mathbf{R}/R^{3} \tag{4}$$

式中P为沿x⁻方向的等效偶极矩。R为从原点(偶极子中心)到空间某点的距离。式中的等效 电荷和等效偶极矩在优化激发态高斯基的过程中确定。

1.2 Born-Mayer 排斥能 Bn,

由最近邻离子的电子云重迭引起的排斥能可表示成 Born-Mayer 形式:

$$V_{ij} = A_0 e^{-r_0 / r_0} \tag{5}$$

式中r,,为离子:和j之间的距离,A,和P,,为每对离子间的特性常数。

1.3 极化能 Epui

在计算极化能时,略去偶极一偶极相互作用,采用最低阶的 Mott-Littleton 方法^[0],将极 化能表示成:

$$B_{pol} = -\frac{1}{2} \sum_{r} a_{r} |E_{loc}(R_{r})|^{2}$$
(6)

式中 α , 为 γ 离子的极化率, $E_{loc}(R_{\gamma})$ 为除 R, 处的离子外的所有其它离子和 F 心电子在 R, 处产生的局域电场。

1.4 F心电子的能量 B.

在单电子 Hartree-Fock 近似下,F心电子的波函数应满足下面方程:

$$\langle \hat{T} + \hat{V} | \psi(\mathbf{r}) \rangle = E | \psi(\mathbf{r}) \rangle \tag{7}$$

由 Phillings-Kleiman 的赝势公式^[0],式中 🖓 可以表示为:

$$\vec{V} = \vec{V}_{Pl} + \vec{V}_{BC} + \vec{V}_{ac} \tag{8}$$

其中 \hat{V}_{H} 为点电荷势, \hat{V}_{ee} 和 \hat{V}_{ee} 分别为屏蔽库仑势及交换势。考虑F心电子波函数与所有离子 壳层波函数的正交性要求,将 $|\psi(r)\rangle$ 写为:

$$|\psi(\mathbf{r})\rangle = |\varphi\rangle - \sum_{\mathbf{r},\lambda} |x_{\mathbf{r},\lambda}\rangle \langle x_{\mathbf{r},\lambda} |\varphi\rangle$$
(9)

式中 $x_{r,\lambda}$ 为第y离子的 λ 轨道波函数, $|\varphi\rangle$ 为赝电子波函数,用 ls高斯函数的线性组合表示 φ :

$$\varphi = \sum_{i} b_{i} \exp[\beta_{i} (\mathbf{r} - \mathbf{R}_{i})^{2}] = \sum_{i} b_{i} \varphi_{i}$$
(10)

式中 B 和 R 均为优化参数, b 为线性组合系数,由下面本征方程确定:

$$|H_{ij} - ES_{ij}| = 0 \tag{11}$$

其中:

$$H_{ij} = \langle \varphi_i | \hat{T} | \varphi_j \rangle + \langle \varphi_i | \hat{V}_{FI} | \varphi_j \rangle + \langle \varphi_i | \hat{V}_{sc} | \varphi_j \rangle + \langle \varphi_i | \hat{V}_{sc} | \varphi_j \rangle - \sum_{r,\lambda} E_{r,\lambda} \langle \varphi_i | x_{r,\lambda} \rangle \langle x_{r,\lambda} | \varphi_j \rangle$$
(12)

$$S_{ij} = \langle \varphi_i | \varphi_j \rangle - \sum_{y,k} \langle \varphi_i | x_{y,k} \rangle \langle x_{y,k} | \varphi_j \rangle$$
(13)

式中的 By, 1 的第 p 离子的 λ 轨道的能量。

2 计算结果和讨论

2.1 F_B(Na⁺)的基态和激发能

当 KF 中的 F_b(Na⁺)处于基态时,设 F 心电子处于球对称的 S 态,用一组优化的高斯函数来描述。从完整晶格开始,对系统进行全变分求极小计算,通过三次迭代求得系统的基态 能量为₁F_b(1)构形为 3.75 eV,F_b(2)构形为 3.67 eV. 两种构形的基态能量相差很小(0.08 eV),表明基态时 F_b(Na⁺)可处于任一构形。

当系统收到光激发时,F心电子从 1s 态跃迁到 2p 态,由对称性分析,取坐标如图 1 所示。在 Frank-conden 近似下,跃迁时将保持基态的晶格位移场不变。用一组优化的高斯瓣函数描述处于激发态的 F 心电子。在优化高斯基的过程中同时优化确定等效电荷(等效偶极 矩)。计算的激发能及相应的等效电荷(等效偶极矩)如表 1 所示。

	基态	散发态	激发能	激发能	等效电荷(偶极矩) (原子单位)	
刊 北	能量	能量	计算值	实验值		
F _P (1)	3. 75	P. 16. 31	2.56	2. 54	$q_1 = q_2 = \frac{1}{17}$	
F ₈ (2)	3. 67	Pr : 6. 23	2.56	2. 54	$\vec{P} = \frac{1}{3.7} (\hat{i} - \hat{j})$	
		P. , 6. 13	2. 46	2. 42	$q_1 = \frac{1}{7, 9}$ $q_2 = \frac{1}{5, 9}$	

表 1 KF 中 F₃(Na⁺)的激发能(eV),等效电荷(偶极矩)

表1给出的激发能的计算值和实验值符合得很 好。对Fs(1)构形的P.激发态,两个偶极子的等效电 荷相等,对Fs(2)构形的P.态,等效偶极子的方向沿 北 轴,这些结果显然和两个 Na+离子分布的对称性 相关。对Fs(2)构形的P.态,两个偶极子的等效电荷 不再相等,这是由于此时 K+离子和 Na+离子分别位 于激发态 F 心电子的两边,从而引起电子云分布不 对称的结果。

图 2 吸收和辐射示意图

2.2 激发态弛豫过程和辐射能量

系统的吸收和辐射过程的示意图如图 2 所示。

当系统受到光激发而跃迁到状态(2)时,将经过一个无辐射弛豫过程到达状态(3).在保持 状态(3)晶格位移场不变的情况下系统将向状态(4)跃迁而放出辐射能量。计算结果如表 2 所示。

光诸及激	k	 大 衣 (能 (4)	<u>売</u> 税量	辐射能量	
发态类型	(2)	(8)			计算	实验
F,(1),P,态	6. 31	5.75	4.06	0.56	1.69	1.72
F』(2)(I),P』态	6. 23	6.01	3. 88	0. 22	2. 1 3	2. 07
Fa(2)(1),P. 态	6, 13	5. 24	4.51	0. 89	0. 73	0.69

表 2 KF 中 Fs(Na+)的激发态弛豫及辐射能量(eV)

表 2 的结果表明:对 F_b(2)构形,当系统处于 P_x态时,弛豫能量为 0.89 eV,远大于 P_x态 的弛豫能量 0.22 eV.对 F_b(1)构形,弛豫能量为 0.56 eV,也比 P_x态的弛豫能量大得多,这 表明当激发态 F 心电子云分布指向减金属离子时,激发态无辐射弛豫过程就较强。再考虑表 1 给出的等效电荷的大小,可以认为:激发态偶极作用对无辐射弛豫过程有重要影响。对 F_b (2)构形的 P_x态,由于偶极作用最强,由此引起的弛豫能量也最大,对 F_b(1)构形的 P_x态,因 为对称偶极作用较前者弱(相当于四极子作用),故弛豫能量也较小,对 F_b(2)构形的 P_x态, 电子云分布指向较远的卤离子,相应的偶极作用最弱,弛豫能量也最小,

表 2 的结果还表明1在考虑了激发态偶极子作用时,辐射能量的计算值和实验值符合得 非常好,其中 Ps(2)(I)辐射谱产生了较大的 stokes 位移。此外,我们在计算中发现:如不考 虑激发态偶极作用,则吸收和辐射能量的计算值和实验值的误差很大,达到 0.5~1.0 eV, 实际上已失去了计算的意义。

2.3 F_s(2)(1)和F_s(2)(1)辐射谱热转换机理的讨论

由上述结果,可以初步认为;在低温情况下,热运动对晶格离子的运动影响很小,F_B(2) 构形具有对 x' 轴的对称性,激发态 F 心电子将处于 P_x 态,辐射谱为 F_B(2)(1), 当温度较高 时,激发态 F 心电子将处于偶极作用较强的 P₂态,辐射谱为 F_B(2)(1).

为了研究上述两种辐射谱的热转换机理,我们计算了 Fs(2)构形的 Ps激发态,结果表明:当激发态能量(状态(2))在 6.2~6.40 eV 范围内变化时,经过无辐射弛豫过程以后,激发态(3)的能量均低于同位形下的基态能量(状态(4)),这实际上表明此时不会有辐射产

生。因此,笔者对F₈(2)(1)和F₈(2)(1)辐射谱的热转换现象给出如下可能的机理;在低温时F₈(2)系统处于P₄激发态,产生F₉(2)(1)辐射谱。当温度升高时,因为P₃激发态与P₄态相距很小,所以在热运动的影响下,当系统受到光激发时,可能向P₂态跃迁,从而出现F₈(2)(1)辐射谱随温度上升而强度减弱的现象。当温度上升到75~100 K时,系统将处于P₂态,此时没有辐射产生。当温度进一步升高时,系统将越过P₂态而处于P₂态,此时将产生F₈(2)(1)辐射谱。在这种机理中,P₄态作为P₄态与P₄态之间的过渡态,相当于一个势全而存在。对整个转换机制起重要作用,如果不存在这种过渡态,F₈(2)(1)辐射谱,的减弱与F₈(2)(1)辐射谱的增强就可能出现互补的情况,这种互补情形已在其碱卤晶体的实验中发现^[2]。

3 结 论

.

笔者在单电子 Hartree-Fock 近似及 SLC 扩展离子方法的基础上,提出了 KF 中 F₀(Na⁺) 的激发态偶极子模型,计算了 KF 中 F₈(Na⁺)的激发态弛豫能量及吸收和辐射光谱的能量, 和实验值符合得很好。结果还表明,偶极作用对激发态弛豫过程有重要影响,当 F₀(2)构形 处于 P₂激发态时,由于不对称偶极作用的影响,其辐射谱 F₀(2)(I)产生了很大的 stokes 位 移。通过计算和分析,研究了 F₈(2)构形下 F₀(2)(I)和 F₈(2)(I)辐射谱热转换现象的可能 机理,给出了在强偶极作用下出现中间态 P₂,由此造成随温度上升,系统逐步由 P₂态向 P₂态 过渡,最后实现向 P₂态转换的模型。从而给出了 F₀(2)(I)和 F₀(2)(I)辐射谱热转换现象 的可能解释。

参考文献

- Baldacchini G, Cremona M, Montereali R M, et al. Photoluminescence of F₈ center in KF₂Na⁺. J of Lumin, 1994, 60~61,548
- 2 Baldacchini G, Cremona M, Montereali R M, et al. Thermal conversion of F_A center relaxed excited states in KF₁ Na⁺. J of Lumin, 1994, 58, 278
- 3 Baldacchini G, Giovenale E, Matteis F De, et al. New Luminescence of the F_A center in RbCl₁Li⁺. Europhys Lett, 1988,7(7):647
- 4 Chen L F, Leung C H, Song K S. Luminescence and F-H pair creation from Self-Trapped exciton in KCl₁1, RbCl₁ 1 and KCl₁Br. J Phys Soc Japen, 1989, 58(8), 2968
- 5 Song K S, Leung C H. A theoretical study of x-luminescence from self-trapped exciton in alkali hallde crystals. J Phys Condens Matter, 1989, 1, 8425
- 6 Chen L F, Song K S. Modelling of the self-trapped exciton π luminesence in Alkali Halids. J Phys Soc Japen, 1989,58,3022
- 7 Loung L C, Song K S. Electrostatic potential in point-ion lattices. Physica B, 1982, 114, 323
- 8 Mott N F, Littleton M J. Conduction in polar crystals I₂electrolytic conduction in solud salts. Trans Faraday Soc, 1938, 34, 485
- 9 Phillips J C, Kleimman C. New method for calculating wave functions in crystals and molecules Phys Rev, 1958, 116:287