TB330.1

07-12

复合材料封闭截面薄壁杆变形耦合的消减

张培媛 <u>产</u> 这 (面庆大学建筑工程学院, 面庆, 400044)

摘 要 针对薄壁截面杆中面内正应力、剪应力耦合的本构方程,适当选择与 几何和物性均有关的位移描写,得到基本变形在控制方程中耦合最少。这个模型 还给出了截面上自平衡内力的一般描写方法。

关键词 复合材料;薄壁杆,/基本变形;耦合 拿教本构才程。 中国图书资料分类法分类号 TB301

0 引 言

把薄壁杆看作中面为柱面的薄壳,这种柱壳在无力矩状态下工作,轴向内力 N和切向 内力 T 沿截面的中线分布,与之对应的正应变 ϵ 和剪应变 γ 有如下线性本构方程,图 1.

> $N = C_{11} \epsilon + C_{0} \gamma, \qquad T = C_{21} \epsilon + C_{22} \gamma$ (1)

式中 C_n 、 C_n 和 C_{22} 为等效弹性系数。

长期以来,研究工作限于 Co = 0的情况,在乌曼斯理论框架下,适当选择坐标系和引入 适当参数,使拉压变形、两正交面内弯曲变形、自由扭转变形和约束扭转变形在应变能表达 式中减少耦合,把问题分解为几个独立的单向一维问题[1,2]。

当 C₀ ≠ 0, 研究工作多采用二维柱壳模型^[3], 采用一维模型的研究进展甚微。笔者适当 地选择坐标系和相关参数、实现应变能表达式中基本变形耦合的最小化,同时给出截面上自 平衡内力的一般描写,得到一个实用的一维模型和分析方法。

变形的描写 1

薄壁杆视为柱壳,不计弯曲内力,把壳体中面位移的轴向和周向分量分别记作 ω利 α. 按文[2.3]

$$\omega = s(z) - \xi(z) x(s) - \dot{\eta}(z) y(s) - \dot{\beta}(z) \omega(s)$$

$$u = h_{\mathrm{H}}(s) \theta(z) + \xi(z) \dot{x}(s) + \eta(z) \dot{y}(s)$$
(2)

式中 s为自某点 P。起算的截面中线 P的弧长,图 2.

$$\omega(s) = \omega_{\alpha}(s) - \psi(s)$$

$$\omega_{n}(s) = \int_{P_{0}}^{P(s)} h_{n}(s) ds, \psi(s) = \int_{P_{0}}^{P(s)} \rho_{n}(s) ds$$

• 收文日期 1998-03-26 第一作者:男,1941年生,教授

图 1 封闭截面薄壁杆

图 2 参数 ha 和 hs

 h_A 和 h_B 分别为点A和B到动点P(s)切线的距离(图2),∮()ds为截面中线P上的线积分。 点A与B的位置和H(s)为待确定的参数。 $\zeta(z) \xi(z) \eta(z) \theta(z)$ 和 $\beta(z)$ 是描写杆变形的几何量。式(2) 与文献[1,3] 类似,但式(2) 更具普通性。

与式(2) 相应的应变为

$$\epsilon = \frac{\partial \omega}{\partial z} = \zeta - \ddot{\xi}_{x} - \ddot{\eta}_{y} - \ddot{\beta}_{\omega}$$

$$r = \frac{\partial \omega}{\partial s} + \frac{\partial u}{\partial z} = h_{B}\partial - \dot{\omega}\beta$$
(4)

位移分量和应变分量的单值条件要求 ω(s)和 H(s)是 Γ上的单值连续函数,且

 $\omega(0) = \omega(l), \qquad \omega(0) = \omega(l)$

而 x(s)、y(s)、 $h_a(s)$ 和 $h_b(s)$ 总是 Γ 上定义的单值连续函数。这里 l 为截面中线的周长。

2 等效本构方程与基本变形耦合的消减

定义杆截面的广义内力 N_x、M_y、M_x、M_x、B和 M_a分别为

$$N_{z} = \oint Nds \qquad M_{y} = -\oint dNds \qquad M_{x} = \oint gNds$$

$$B = \oint \omega Nds \qquad M_{z} = \oint h_{0}Tds \qquad M_{\theta} = \oint T\omega ds$$
(5)

利用式(1),(4)和(5),得到6个广义内力与表示基本变形的5个量 ζ,ξ,η,β 和 θ 的如下线性 齐次关系。

$$\begin{bmatrix} N_{1} \\ M_{y} \\ M_{x} \\ B \\ M_{y} \\ M_{y} \end{bmatrix} \begin{bmatrix} D_{11} & D_{12} & D_{13} & D_{14} & D_{15} & D_{16} \\ D_{21} & D_{22} & D_{23} & D_{24} & D_{25} & D_{25} \\ D_{31} & D_{32} & D_{33} & D_{34} & D_{35} & D_{36} \\ D_{41} & D_{42} & D_{43} & D_{44} & D_{45} & D_{46} \\ M_{1} & D_{51} & D_{52} & D_{53} & D_{54} & D_{55} & D_{56} \\ M_{y} & D_{51} & D_{52} & D_{53} & D_{54} & D_{55} & D_{56} \\ M_{y} & D_{61} & D_{62} & D_{63} & D_{64} & D_{65} & D_{66} \end{bmatrix} \begin{bmatrix} \zeta \\ - \xi \\ - \eta \\ - \beta \\ - \beta \end{bmatrix}$$
(6)

如果所用坐标系 accy, 点 B和A的位置与 H(s) 满足条件

$$\oint C_{11} \operatorname{xd} s = 0, \quad \oint C_{11} \operatorname{yd} s = 0, \quad \oint C_{11} \operatorname{xyd} s = 0$$
(7)

$$\oint C_{12} h_{ik} \pi \mathrm{d} \, s = 0, \quad \oint C_{12} h_{ik} \mathrm{d} \, s = 0 \tag{8}$$

$$\oint C_{11} \operatorname{ad} s = 0, \quad \oint C_{11} \operatorname{add} s = 0, \quad \oint C_{11} \operatorname{add} s = 0, \quad \oint C_{12} \operatorname{ah}_{B} \mathrm{d} s = 0$$

$$\oint C_{12} \operatorname{ad} s = 0, \quad \oint C_{12} \operatorname{add} s = 0, \quad \oint C_{12} \operatorname{add} s = 0, \quad \oint C_{12} \operatorname{ah}_{B} \mathrm{d} s = 0$$
(9)

式(6) 简化为基本变形耦合得到最大消减的形式

$$N_{z} = D_{11} \zeta + D_{15} \dot{\theta}, \quad M_{z} = D_{15} \zeta + D_{35} \dot{\theta}, \quad N_{y} = -D_{22} \ddot{\xi} \\ B = -D_{44} \ddot{\beta} - D_{46} \dot{\beta}, \quad M_{B} = -D_{46} \ddot{\beta} - D_{66} \dot{\theta}, \quad M_{x} = -D_{33} \ddot{\eta}$$
(10)

式中

$$D_{11} = \oint C_{11} ds, \quad D_{15} = \oint C_{12} h_{B} ds, \quad D_{55} = \oint C_{22} h_{B}^{2} ds$$

$$D_{44} = \oint C_{11} \omega^{2} ds, \quad D_{46} = \oint C_{12} \omega \omega ds, \quad D_{66} = \oint C_{22} \omega^{2} ds$$

$$D_{22} = \oint C_{11} x^{2} ds, \quad D_{33} = \oint C_{11} y^{2} ds$$
(11)

这种条件下,单位长度杆的应变能力 U = $\oint \frac{1}{2} [C_1 \epsilon^2 + 2C_n \epsilon r + C_n \gamma^2] d_s$,可以成为基本变 形耦合得到最大消减的形式

$$U = \frac{1}{2} \left[D_{11} \dot{\zeta}^2 + 2 D_{15} \dot{\zeta} \dot{\theta} + D_{55} \dot{\theta}^2 + D_{44} \ddot{\beta}^2 + 2 D_{46} \dot{\beta} \dot{\beta} + D_{56} \dot{\beta}^2 + D_{22} \dot{\xi}^2 + D_{33} \vec{\eta}^2 \right]$$
(12)

这种条件下,可用最小势能原理,建立基本变形几何量 ζ、ξ、η θ和 β的微分方程组。这 个微分方程组成为耦合得到最大消减的形式,即分解为彼此独立的 4 组,其中一组含 ζ 和 θ, 其余 3 组分别只含 ξ、η 和 β.

3 自平衡内力与参数 H(s)

按式(1)和(4),与变形几何量 β相应的轴向内力 Ne 和切向内力 Te 分别为

$$N_{\beta} = -C_{11} \omega(s) \ddot{\beta} - C_{12} \dot{\omega}(s) \dot{\beta}, \qquad T_{\beta} = -C_{12} \omega(s) \ddot{\beta} - C_{22} \dot{\omega}(s) \dot{\beta}$$
(13)

计算截面上 N₀和 T_p形成力系的主矢和主矩,可以得到它们在截面上形成平衡力系的充分 *,*条件是方程(9)和如下方程成立

$$\oint C_{11} \omega(s) dx = 0, \quad \oint C_{12} \omega(s) dy = 0$$

$$\oint C_{22} \omega(s) dx = 0, \quad \oint C_{22} \omega(s) dy = 0$$
(14)

因此,以下讨论将方程(7)、(8)、(9)和(14)作为寻求基本变形解耦的充分条件。

利用这些条件寻求基本变形解耦,首先由条件(7)选坐标系 uzy,然后按条件(8)确定点 B的坐标。由于易于实现,本文从略。下面着重计算 H(s)的选取。

构成 H(s) 的形式很多, 例如取

$$H(s) = \sum_{k=0,1,2,\cdots} H_k \cos \frac{k\pi}{l} s$$
(15)

不失一般性,使 ∮H(s)ds = L,注意到 H(s) 的单值条件,得到

$$H_0 = 1$$
 $\sum_{k=1,2,\cdots} H_{2k-1} = H_1 + H_3 + H_5 + \cdots = 0$ (16)

总可以把 h₄ 表示为

$$h_{\rm A}(s) = \frac{\Omega}{l} \sum_{k=0,1,2,\cdots} C_k \cos \frac{k\pi}{l} s$$
 (17)

条件(3) 和单值性要求

$$C_0 = 1$$
 $\sum_{k=1,2,\cdots} C_{2k-1} = C_1 + C_3 + C_5 + \cdots = 0$ (18)

于是

$$e = \frac{\Omega}{l} \sum_{k=0,1,2,\cdots} H_k \cos \frac{k\pi}{l} s \qquad \omega = \Omega \sum_{k=1,2,\cdots} (C_k - H_k) \frac{1}{k\pi} \sin \frac{k\pi}{l} s$$
(19)

把 $h_A(s)$ 取为 $h_B(s)$ 仍不失一般性。这样一来,式(9)、(14)、(16) 和(18) 组成含未知数 H_b 、 H_i 、 H_i 、··· 的 16 个线性代数方程。满足这方程组的系数 H_a ,便给出了 H(s) 的一个解。

一般而言,满足条件(9)和(14)的单值连续函数 H(s)不是唯一的。H(s)的多解方案正 是截面上自平衡内力分布(13)多样性的表面。

4 特 例

如果 $C_u = tE_u$, E_u 与 s 无关, 厚度 t 与 s 有关; 那末式(7)、(8)、(9) 和(14) 与物性参数 E_u 无关, 只与截面几何参数有关, 成为如下 15 个方程;

$$\oint x t d s = 0, \quad \oint y t d s = 0, \quad \oint x y t d s = 0$$
(20)

$$\oint h_{\rm B} \operatorname{atd} s = 0, \quad \oint h_{\rm B} \operatorname{ptd} s = 0 \tag{21}$$

$$\left. \oint (h_{\rm B} - e) \, td\,s = 0, \quad \oint extd\,s = 0, \quad \oint eytd\,s = 0, \quad \oint (h_{\rm B}^2 - h_{\rm B}e) \, td\,s = 0 \\
\left. \oint \frac{d\,x}{d\,s}(h_{\rm B} - e) \, td\,s = 0, \quad \oint \frac{d\,y}{d\,s}(h_{\rm B} - e) \, td\,s = 0 \\
\left. \oint \omega td\,s = 0, \quad \oint \omega xtd\,s = 0, \quad \oint \omega ytd\,s = 0, \quad \oint \omega h_{\rm A}td\,s = 0 \\
\right\}$$
(22)

特别当 C_{μ} 与 s 无关,这些条件只与截面中线几何形状有关, 与厚度 t 无关(E_{μ} 与 s 无 关)。

如果 E_{ω} 与 s无关,截面有两正交的对称轴,则这对称轴便是满足条件(7)的坐标轴 ar 与 ay,坐标原点便是点 A和点 B.

如果 Cat 与 s 无关, 截面中线为正多边形, 内切圆半径为 a, 那末当边数为偶数时总有

$$x(s) = \sum_{k=2,4,\cdots} a_k \cos \frac{k\pi}{l} s, \qquad y(s) = \sum_{k=2,4,\cdots} b_k \sin \frac{k\pi}{l} s$$
(23)

$$\frac{\Omega}{l} = a, C_1 = C_2 = \cdots = 0$$
 (24)

总可以取 氏 = 氏 = 氏 = … = 0,利用公式

$$\int_{0}^{l} \cos \frac{k\pi s}{l} \cos \frac{k\pi s}{l} ds = \begin{cases} l/2 & k = m \\ 0 & k \neq m \end{cases} \quad k, m = 2, 4, 6, \cdots$$

$$\int_{0}^{l} \sin \frac{k\pi s}{l} \sin \frac{k\pi s}{l} ds = \begin{cases} l/2 & k = m \\ 0 & k \neq m \end{cases} \quad k, m = 2, 4, 6, \cdots$$

$$\int_{0}^{l} \sin \frac{k\pi s}{l} \cos \frac{k\pi s}{l} ds = 0 \qquad k, m = 2, 4, 6, \cdots$$

$$(25)$$

条件(22) 成为如下 3 个

$$a_{2}H_{2} + a_{4}H_{4} + a_{6}H_{8} + a_{6}H_{8} + \dots = 0$$

$$b_{2}H_{2} + 2b_{4}H_{4} + 3b_{6}H_{6} + 4b_{8}H_{8} + \dots = 0$$

$$b_{2}H_{2} + \frac{1}{2}b_{4}H_{4} + \frac{1}{3}b_{6}H_{6} + \frac{1}{4}b_{8}H_{8} + \dots = 0$$
(26)

对于 Li Li… 总存在非零解,且解不具唯一性,相应的截面的自平衡内力分布方式不具唯一 性。

如果截面中线为圆, $a_4 = a_6 = \dots = 0$, $b_4 = b_6 = \dots = 0$, 条件(26) 成为 $H_2 = 0$

因此,对任意 凡,凡,…,参数

$$H(s) = 1 + H_4 \cos \frac{4\pi}{l} s + H_6 \cos \frac{6\pi}{l} s + \cdots$$
 (27)

总是方程(22)的解。相应的截面内力素为式(13)表示。由此看来,薄壁圆形截面杆也存在自 平衡的内力,存在双力矩。

在式(27) 中只取前两项

$$\omega = -\Omega H_4 \frac{1}{4\pi} \sin \frac{4\pi}{l} s, \qquad \dot{\omega} = -\Omega H_4 \cos \frac{4\pi}{l} s$$
$$N_{\rho} = -\left[C_{11} H_4 \frac{1}{4\pi} \sin \frac{4\pi}{l} s\dot{\beta} + C_{12} H_4 \frac{1}{l} \cos \frac{4\pi}{l} s\dot{\beta}\right] \Omega$$
$$T_{\beta} = -\left[C_{12} H_4 \frac{1}{4\pi} \sin \frac{4\pi}{l} s\dot{\beta} + C_{22} H_4 \frac{1}{l} \cos \frac{4\pi}{l} s\dot{\beta}\right] \Omega$$

不计杆长度上分布的外力,按最小势能原理导出的关于 β的微分方程为

$$\overset{(4)}{\beta} - \lambda^2 \ddot{\beta} = 0 \qquad \lambda = \frac{2}{a} \sqrt{\frac{C_{22}}{C_{11}}}$$

这方程的解为

$$\beta = C_1 + C_2 z + C_3 e^{ix} + C_4 e^{-ix}, \qquad C_1 \setminus C_2 \setminus C_3 \setminus C_4 \text{ b matrix}$$

因此,与 C_1 相关的自平衡内力按 e^{-x} 衰减,与 C_2 相关的自平衡内力设有衰减的性质,这是 通常的薄壁杆理论所未预计的现象。

5 结 语

作者提出的用参数 $h_{\rm B}$ 、 $h_{\rm A}$ 、H(s) 建立的封闭截面薄壁杆 $C_{12} \neq 0$ 这一普通情况的分析 模型和方法,提出了基本变形耦合描写的最大消减,给出了截面上包括双力矩在内的自平衡 内力描写的普遍形式以及正多边形和圆的周界为截面中线的一般解,得到了圆筒薄壁杆存 在自平衡内力的结论。

参 考 文 献

2 罗祖道,吴希贤、复合材料及其结构的力学进展、广州;华南理工大学出版社,1992

3 罗祖道,李见简,各向异性材料力学,上海;上海交通大学出版社,1994

The Elimination of Deformation Coupling in Thin-Wall Composite Material Rod with Closed Section

Zhang Peiyuan Yan Bo (College of Architectural Engineering, Chongging University)

ABSTRACT Under the condition that normal stress and shear stress are coupled in constitutive equations, a set of displacements which depend on geometric and physical properties of a thin-wall rod is specially designated to minimize the coupling of basic deformations in control equations, and general forms to describe self-balance system of internal forces are proposed with the model given by the present paper.

KEYWORDS composite; thin-wall rod; basic deformation; coupling

(責任編輯 钟学恒)

 ¹ 詹涅里杰, Γ Ю. 弹性薄壁杆件的静力学,北京:科学出版社,1995