文章编号:1000-582X(2005)01-0149-04

电解液栅型碳纳米管场效应晶体管的实验研究

吕建伟^{1,2},王万录¹,廖克俊¹,王永田¹,万步勇¹,孔纪兰³ (1. 重庆大学 应用物理系,重庆 400030;

2. 重庆日报报业集团,重庆 400010;3. 重庆大学 材料科学与工程学院,重庆 400030)

摘 要:由于碳纳米管具有独特的结构和性能,因而一直受到人们的关注。对于包括碳纳米管场效 应管在内的分子元件的研究方面尤其令人注目。笔者研究了具有电解液栅的碳纳米管场效应晶体管。 研究中所用的碳纳米管是用热灯丝化学气相沉积法(CVD)合成的。衬底材料是平面玻璃、Fe/Ni 混合 物用作催化剂。对具有 Ag 电极的多壁碳纳米管晶体管作了优化设计制造,并利用 KCl 溶液作为栅极。 实验结果表明,电解液栅型碳纳米管晶体管(FET)呈现出良好的电流-电压特性曲线。在栅压2V时, 其跨导约为0.5 mA/V。并对获得的研究结果进行了讨论。

关键词:碳纳米管:场效应晶体管:电解液栅极:I-V特性:跨导 中图分类号:TN112 文献标识码:A

碳纳米管(Carbon nanotube)是 1991 年由日本 NEC 科学家饭岛澄男(Sumino Lijima)博士发现的一种 碳结构^[1]。理想的碳纳米管是由碳原子形成的石墨 **烯片层卷成的无缝、中空的管体。由于具有较大的长** 径比,碳纳米管(尤其是单壁碳纳米管,SWNT)是典型 的一维纳米材料,并呈现出良好的导体或半导体特 性^[2-3]。自碳纳米管发现以来,由于其结构的特殊性 使得碳纳米管具有许多特殊性能,受到了全球科学家 的广泛关注。但由于制造与加工技术的制约,对其应 用研究进展仍较为缓慢。

近年来,随着制造与加工技术的不断发展,碳纳米 管很快就成为了研究得最多的纳米材料。以碳纳米管 为单元所进行的纳米器件研究工作十分前沿。人们正 试图利用碳纳米管来制作二极管、三极管、场效应管 (FET)等纳米电子器件。目前人们已发现了单壁碳纳 米管(SWNT)的晶体管场效应特性,在此基础上,又发 现了单根多壁碳纳米管(MWNT)的场效应特性^[4-8], 而美国的 IBM 公司已经利用碳纳米管试制出了 FET (场效应晶体管),其性能已经超过了硅类 MOSFET (金属氧化膜半导体 FET)。最近, M. Kruger 等人利用 电解液作为栅电极观察到电解液栅型碳纳米管也有场

效应现象^[9]。通过对碳纳米管膜的伏安特性进行进 一步的研究发现:利用电解液对碳纳米管膜所施加的 栅极电压对流经碳纳米管膜两端的电流强度有明显的 控制作用,即具有显著的场效应特性。这一研究将进 一步拓宽碳纳米管在电子、机械、医药、能源、化工等工 业技术领域的应用前景。

1 实验及结果

在本实验中,碳纳米管是用热灯丝化学气相沉积 法(CVD)制备的,用抛光的 Si 单晶片用作衬底材料。 以纯度大于 99.99% 的高纯 Ni 和 Fe(比例为 1:1)作 为溅射靶材,利用射频溅射法在 Si 单晶片上生长一层 厚度约 20 nm 的 Ni/Fe 薄膜作为催化剂。将覆盖着 Ni/Fe 薄膜的 Si 单晶片置于 CVD 系统的反应室中,并 在气压为 2 700 Pa, 温度为 850 ℃的环境条件下通入 气流量为 200 cm³/min 的 H₂ 气,经 10 min 的处理后, 再通入流量为 250 cm³/min 的 NH₃气替代 H₂ 气,1 min 后通入流量为 120 cm3/min 的 C2H2气体开始碳纳米 管的核化与生长。生长 15 min 后获得待实验的样品。 实验中,对利用热灯丝化学气相沉积法(CVD)制备的 碳纳米管样品用扫描电子显微镜(SEM)和透射电子

• 收稿日期:2004-09-20 基金项目:国家自然科学基金资助项目(60376032) 作者简介:吕建伟(1968-),男,北京人,重庆大学博士研究生,主要从事纳米科学与技术研究。 显微镜(TEM)进行表征。图 1(a) 是碳纳米管的 SEM 观测图像,测出其长度介于 10~20 μm。通过 TEM 观 察可知(如图 1(b)所示),生成的碳纳米管是多壁结 构的(MWST),其直径在 20~50 nm 之间。

(a) 碳纳米管的SEM图像

(b) 碳纳米管的TEM图像

图1 碳纳米管的观测图像

将 Si 衬底上制作的碳纳米管用超声处理并取下 提纯后,放入混合比为 3:1 的硫酸和硝酸混合液中对 其进行化学切割处理^[10]。通过 SEM 观察到碳纳米管 的长度分布在 1 μm 的范围内后,加入无水乙醇并用 超声波进行分散处理。经分层过滤后喷涂在玻璃片上 形成薄膜。将薄膜红外烘干后,再重复喷涂,再烘干, 重复多次,就可得到厚度约 2 μm,均匀致密的碳纳米 管薄膜。在薄膜的两端用导电胶粘上电极并用环氧树 脂(AB 胶)将裸露的电极封闭。在碳纳米管膜表面, 用 AB 胶涂成环状,用于实验时滴于膜表面上的电解 液,以免溶液从边缘流出,从而起到对边缘的保护作 用,同时有效防止漏电流的增大^[9,11]。图 2 是共面电 极碳纳米管薄膜示意图(两电极间所夹的碳纳米管薄 膜面积约 0.7 cm²)。

图 2 碳纳米管薄膜示意图

配制浓度为 2 mol 的 KCl 溶液。用分析天平称量 24.2 g KCl 晶体(纯度为 99.999%),加入 160 mL 的 去离子水中搅拌均匀后即可获得。

伏安特性测试。方法如图 3 所示,用玻璃滴管滴 少许的 KCl 溶液在碳纳米管膜表面的 AB 胶环内,再 让探针通过电解液(KCl 溶液)作用于碳纳米管膜上 方,充当场效应管(FET)中的栅极。保持栅电压不变, 用高精度的电流表和电压表测量碳纳米管膜电极两端 的伏安特性。然后,改变栅电压的大小和极性,再进行 反复测量,以研究栅电压对流经碳纳米管膜两端电极 的电流强度的控制作用。实验后,将碳纳米管膜烘干, 用 SEM 观察其表面状态,以确保没有裂纹等损坏 情况。

图 3 实验装置电路图示意

2 实验结果

在所使用的碳纳米管膜未被滴入电解液(KCl 溶 液)前,测得其两电极间的电阻约为650Ω。当滴入电 解液并施加一定的正向栅压 $V_{x}(V_{x} > 0)$ 时,对碳纳米 管膜两共面电极间伏安特性($V_a - I_a$ 特性曲线)的测 量发现:开始时,电流 I_a 随 V_a 的增加而呈现类似于线 形的增加,当 Va 增大到一定的值时,电流 Ia 的增幅逐 步变缓并最终达到饱和;加大栅压 V,后,重复上述步 骤,会发现栅电压 V,对碳纳米管膜两极间的电流强度 I_a 有较强的控制作用,其 $V_a - I_a$ 特性曲线十分类似于 MOS 场效应管(FET)的漏极(d 极)特性曲线。当施 加负向栅压 V_x(V_x < 0)时,对碳纳米管膜两极间伏安 特性(Va-Ia特性曲线)的测量发现:其电流 Ia随 Va 的增大而增大,且呈现出较大的不稳定性。图4为室 温下,施加不同的正向栅压 V, 时,碳纳米管膜两电极 间的伏安特性曲线图,可以看出这是典型的场效应特 性曲线。

3 讨论

在本实验中,所制作的多壁碳纳米管(SWNT)试 样具有明显的 P – 型半导体特征^[12-13],所以传导的是 空穴而不是电子。这是由于从大气中来的气体分子被 吸附于碳纳米管上,使其氧化造成的^[14-15],并掺杂着 电极的电荷转化。大量的实验表明:P – 型碳纳米管 在重掺杂水分子后,将转为 N – 型半导体而传导电 子^[16-17]。因此,碳纳米管膜/电解液界面变为了 N – 型半导体/电解液界面。随着栅电极尽量地接近碳纳

图4 室温下,碳纳米管膜两电极间的伏安特性曲线图 米管膜表面传导将增强。该界面上将产生空间电荷 层,可以在未加偏压(V_g=0)时观测到电势的存在。 单根碳纳米管场效应管(FET)的成功制备有力地证明 了通过电解液施加栅压的可行性^[9,11]。这种结构类似 于常规 MOSFET 结构,具有传导通道沟道。这一结构 意味着碳纳米管和栅极之间的间隙能被做得非常小, 因此使得的 FET 中沟道变化对栅电压的变化很敏感。

图5 碳纳米管膜/电解液界面电荷分布示意图

图 6 加正栅压时,膜/液界面的电容模型示意图

如图 5 所示,为碳纳米管膜/电解液界面电荷分布 示意图。当逐步施加正向栅电压 V_g 时,在碳纳米管和 电极之间形成了一个空间电荷层,即栅电极附近积累 了负离子,而碳纳米管附近形成了正离子电荷层。正 离子电荷层进而在碳纳米管上感应出电子积累层。随 着栅电压 V_g 增加,离子电荷层增大,在碳纳米管中电 子积累层增厚,即沟道变宽,电流 I_{d} 增大。随着源极 (s 极)漏极(d 极)之间电压 V_d 增加,在同一栅压(即 固定沟道宽度下)电流 I_{d} 亦增加。但由于沟道宽度是 固定的,所以 V_d 增加到一定数值后,电流 I_{d} 不再增 加。即达到饱和状态。这恰好显示出通常的 FET 特性。图 6 为施加正栅压时,碳纳米管膜/电解液界面的电容模型示意图。

·可以由以下公式估算出本 FET 的跨导 $g_m^{[11]}$:

$$g_m = C_p \mid V_p - V_{pq} \mid \mu/L \tag{1}$$

式中 C_g 为碳纳米管单位长度的电容, V_g 为栅电 压, V_g , 为夹断电压, μ 为电子迁移率, L 为沟道长度。 对于单根碳纳米管, 理论估算其跨导值约为 27 μ A/V。 该数值大于目前通用的 MOSFET 的单位宽度的跨导 值。对于多壁碳纳米管膜电解液栅 FET, 由图 4 可以 看出, 它的跨导 $g_m = dI_a / dV_g \approx 0.5 mA/V$ 。这个值 大于单根碳纳米管的跨导估算值。尽管膜中各碳纳米 管之间存在着接触电阻, 会影响到电子的传输过程, 但 由于实验中所用的碳纳米管膜是由无序的碳纳米管组 成, 增加了电流的路径, 从而导致了跨导的增加。在负 栅压下, 沟道中电子浓度大大降低, 除漏电流外, 无场 效应电流电压特性出现。

4 结 语

通过对碳纳米管膜/电解液界面的伏安特性的研 究发现,不仅单根的碳纳米管具有场效应管特性;在室 温下利用电解液相对碳纳米管膜施加正向栅压时,栅 电压对流经碳纳米管膜两端的电流强度有明显的控制 作用且呈现出一定的饱和特性,说明碳纳米管膜也具 有一定的场效应特性。同其它许多材料相比,由于碳 纳米管具有许多独特的物理化学特性,对碳纳米管场 效应管(FET)等基础的纳米元器件的研究一直是国内 外学术界研究开发的热点。随着理论研究与制备工艺 的不断突破,碳纳米管膜/电解液界面的场效应管特 性,必将在包括纳米电子学在内的众多领域里显现出 其广阔的应用前景。

参考文献:

- IIJIMA S. Helical Microtubes of Graphitic Carbon [J]. Nature, 1991, 358: 56-58.
- [2] HAMADA N, SAWADA SI, OSHIYAMA A. New Onedimensional Conductors: Graphite Microtubules [J]. Phys Rev Lett, 1992, 68: 1579 - 1581.
- [3] MINTMIRE J W, DUNLAP B I, White C T. Are Fullerene Tubules Metallic [J]. Phys Rev Lett, 1992, 68: 631 -634.
- [4] TANS S J, VERSCHUEREN A R M, DEKKER C. Room temperature Transistor Based on a Single Carbon Nanotube
 [J]. Nature, 1998, 393: 49 - 52.
- [5] MARTEL R, SCHMIDT T, SHEA H R, et al. Single -

and Multi-wall Carbon Nanotube Field-effect Transistors[J]. Appl Phys Lett, 1998, 73(17): 2 447 - 2 449.

- [6] ZHOU C, KONG J, DAI H. Transport Measurements of Individual Semiconducting Singled-walled Carbon Nanotubes of Various Diameters [J]. Appl Phys Lett, 2000, 76 (12): 1 597.
- [7] MCEUEN P L, BOCKRATH M, COBDEN D H, et al. Disorder, Pseudospins and Backscattering in Carbon Nanotubes[J]. Phys Rev Lett, 1999, 83: 5 098 - 5 101.
- [8] BACHTOLD A, HADLEY P, NAKANISHI T, et al. Logic Circuits With Carbon Nanotube Transistors [J]. Science, 2001, 294: 1 317 - 1 320.
- [9] KRUGER M, BUITELAAR M R, NUSSBAUMER T, et al. The electrochemical Carbon Nanobute Field-effect Transistor
 [J]. Appl Phys Lett, 2001, 78: 1 291 - 1 293.
- [10] LIU J, RINZLER A G, DAI H J, et al. Fullerene Pipes
 [J]. Science, 1998, 280: 1 253 1 256.
- [11] ROSENBLATT S, YAISH Y, PARK J, et al. High Performance Electrolyte-gated Carbon Nanotube Transistors
 [J]. Nano Lett, 2002, 2: 869-872.

- [12] JANG J W, LEE D K, LEE C E, et al. Metallic Conductivity in Bamboo-shaped Multiwalled Carbon Nanotubes
 [J]. Solid State Communications, 2002, 122:619-622.
- [13] LIU K, AVOURIS PH, MARTEL R, et al. Electrical Transport in Dopes Multwalled Carbon Nanotubes [J]. Phys Rev B, 2001, 63; 161 404.
- KONG J, FRANKLIN N R, ZHOU C, et al. Nanotube Molecular Wires as Chemical Sensors[J]. Science, 2000, 287: 622-625.
- [15] COLLINS P G, BRADLEY K, ISHIGAMI M, et al. Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes[J]. Science, 2000, 287: 1 801 - 1 804.
- [16] ZAHAB A, SPINA L, PONCHARAL P, et al. Watervapor Effect on the Electrical Conductivity of a Singlewalled Nanotube mat[J]. Phys Rev B , 2000, 62: 10 000 - 10 003.
- [17] PATI R, ZHANG YM, NAYAK SK, et al. Effect of H₂ O Adsorption on Electron Transport in a Carbon Nanotube
 [J]. Appl Phys Lett, 2002, 81(14): 2638-2640.

Experimental Studies on Electrolyte-gated Carbon Nanotube Field Effect Transitors

LU Jian-wei^{1,2}, WANG Wan-lu¹, LIAO Ke-jun¹, WANG Yong-tian¹, WAN Bu-yong¹, KONG Ji-lan³

(1. Department of Applied Physics, Chongqing University, Chongqing 400030, China;

2. Chongqing Daily Group, Chongqing 400010 China;

3. College of Material Science and Engineering, Chongqing University, Chongqing 400030, China)

Abstract: Owing to unique structure and characteristic of carbon nanotubes, much more are attractions, especially in inolecular elements, including field effect transitors made of carbon nanotubes. Carbon nanotube field effect transitors with electrolyte-gated are investgated. Carbon nanotubes on glass substrate in this study are fabricated by hot filament vapor deposition using Fe / Ni as catalyst. Optimized multi-walled carbon nanobute transistors are made with Ag contact electrodes, and the KCl solution is used as a gate. Experimental results show that the electrolyte-gated carbon nanotube transitors exhibited a good voltage-current characteristic. The transconductance is about 0.5 mA/V at 2 V. The results obtained are discussed.

Key words: carbon nanotubes; field effect transitors; electrolyte-gated; I - V characteristics; transconductance

(编辑 吕赛英)